Visualizing the Lives of Orphaned and Separated Children

Project Summary

Jennie Wang (Economics/Computer Science) and Blen Biru (Biology/French) spent ten weeks building visualizations of various aspects of the lives of orphaned and separated children at six separate sites in Africa and Asia. The team created R Shiny interactive visualizations of data provided by the Positive Outcomes for Orphans study (POFO).

Click here to read the Executive Summary

Year
2018
Contact
Paul Bendich
Mathematics
bendich@math.duke.edu

Project Lead: Kathryn Whetten

Project Manager: Micha Belden

Disciplines Involved: Anthropology, Sociology, History, Public Policy, Education, Global Health, PreMed/PreHealth, all Quantitative STEM
 

Related People

Related Projects

Social and environmental contexts are increasingly recognized as factors that impact health outcomes of patients. This team will have the opportunity to collaborate directly with clinicians and medical data in a real-world setting. They will examine the association between social determinants with risk prediction for hospital admissions, and to assess whether social determinants bias that risk in a systematic way. Applied methods will include machine learning, risk prediction, and assessment of bias. This Data+ project is sponsored by the Forge, Duke's center for actionable data science.

Project Leads: Shelly Rusincovitch, Ricardo Henao, Azalea Kim

Project Manager: Austin Talbot

Aaron Chai (Computer Sciece, Math) and Victoria Worsham (Economics, Math) spent ten weeks building tools to understand characteristics of successful oil and gas licenses in the North Sea. The team used data-scraping, merging, and OCR method to create a dataset containing license information and work obligations, and they also produced ArcGIS visualizations of license and well locations. They had the chance to consult frequently with analytics professionals at ExxonMobil.

Click here to read the Executive Summary

 

Project Lead: Kyle Bradbury

Project Manager: Artem Streltsov

Yueru Li (Math) and Jiacheng Fan (Economics, Finance) spent ten weeks investigating abnormal behavior by companies bidding for oil and gas rights in the Gulf of Mexico. Working with data provided by the Bureau of Ocean Energy Management and ExxonMobil, the team used outlier detection methods to automate the flagging of abnormal behavior, and then used statistical methods to examine various factors that might predict such behavior. They had the chance to consult frequently with analytics professionals at ExxonMobil.

 

Click here to read the Executive Summary

 

Project Lead: Kyle Bradbury

Project Manager: Hyeongyul Roh