2018 Projects
Nathan Liang (Psychology, Statistics), Sandra Luksic (Philosophy, Political Science),and Alexis Malone (Statistics) began their 10-week project as an open-ended exploration how women are depicted both physically and figuratively in women’s magazines, seeking to consider what role magazines play in the imagined and real lives of women. Click here to read the Executive Summary Project Lead: Charlotte...
In tracing the publication history, geographical spread, and content of “pirated” copies of Daniel Defoe’s Robinson Crusoe, Gabriel Guedes (Math, Global Cultural Studies), Lucian Li (Computer Science, History), and Orgil Batzaya (Math, Computer Science) explored the complications of looking at a data set that saw drastic changes over the last three centuries in terms of spelling and...
Bob Ziyang Ding (Math/Stats) and Daniel Chaofan Tao (ECE) spent ten weeks understanding how deep learning techniques can shed light on single cell analysis. Working with a large set of single-cell sequencing data, the team built an autoencoder pipeline and a device that will allow biologists to interactively visualize their own data. Click here...
This data expedition explores the local (ego) patent citation networks of three hybrid vehicle-related patents. The concept of patent citations and technological development is a core theme in innovation and entrepreneurship, and the purpose of these network explorations is to both quantitatively and visually assess how innovations are connected and...
Large publicly available environmental databases are a tremendous resource for both scientists and the general public interested in climate trends and properties. However, without the programming skills to parse and interpret these massive datasets, significant trends may remain hidden from both scientists and the public. In this data exploration, students,...
Our aim was to introduce students to the wealth of possibilities that human genotyping and sequencing hold by illustrating firsthand the power of these datasets to identify genetic relatives, using the story of the Golden State Killer’s capture with public genetic databases. Graduate Students: Ryan Campbell and Jenn Coughlan, Duke Biology Course: BIO190S,...
This Data Expedition introduced hypothesis-driven data analysis in R and the concept of circular data, while providing some tools for importing it and analyzing it in R. After exploring a simple dataset to learn these tools, we applied what we learned to two real examples of circular datasets: one testing for magnetoreception in salmon...
Brooke Erikson (Economics/Computer Science), Alejandro Ortega (Math), and Jade Wu (Computer Science) spent ten weeks developing open-source tools for automatic document categorization, PDF table extraction, and data identification. Their motivating application was provided by Power for All’s Platform for Energy Access Knowledge, and they frequently collaborated with professionals from that organization. Click here to read the...
Jake Epstein (Statistics/Economics), Emre Kiziltug (Economics), and Alexander Rubin (Math/Computer Science) spent ten weeks investigating the existence of relative value opportunities in global corporate bond markets. They worked closely with a dataset provided by a leading asset management firm. Click here for the Executive Summary Disciplines Involved: Economics, all Quantitative STEM Project Lead: Emma Raisel Project...
Maksym Kosachevskyy (Economics) and Jaehyun Yoo (Statistics/Economics) spent ten weeks understanding temporal patterns in the used construction machinery market and investigating the relationship between these patterns and macroeconomic trends. They worked closely with a large dataset provided by MachineryTrader.com, and discussed their findings with analytics professionals from a leading asset management firm. Click...
Alec Ashforth (Economics/Math), Brooke Keene (Electrical & Computer Engineering), Vincent Liu (Electrical & Computer Engineering), and Dezmanique Martin (Computer Science) spent ten weeks helping Duke’s Office of Information Technology explore the development of an “e-advisor” app that recommends co-curricular opportunities to students based on a variety of factors. The team used collaborative and content-based filtering to create a recommender-system...
Statistical Science majors Eidan Jacob and Justina Zou joined forces with math major Mason Simon built interactive tools that analyze and visualize the trajectories taken by wireless devices as they move across Duke’s campus and connect to its wireless network. They used de-identified data provided by Duke’s Office of Information Technology, and worked closely with...
Showing 1-20 of 32 results