Solar Power Estimation

Project Summary

Sharrin ManorArjun DevarajanWuming Zhang, and Jeffrey Perkins explored a lage collection of imagery data provided by the U.S. Geological Survey, with the goal of identifying solar panels using image recognition. They worked closely with the Energy Data Analytics Lab, part of the Energy Initiative at Duke.

Themes and Categories
Year
2015

Project Results

The students coded their own proof-of-principle algorithm which identified solar panels in a small test set with over ninety percent accuracy. They also painstakingly created a ground-truthed dataset that will help train future machine-learning algorithms.

Download the executive summary (PDF).

Video: The students and their mentor talk about the project.

Disciplines Involved

  • Environmental Science
  • Energy Systems
  • Machine Learning
  • Electrical Engineering

Project Team

Undergraduates: Sharrin Manor, Wuming Zhang, Jeffrey Perkins, Arjun Devarajan

Faculty Sponsors:

 

Project Mentor: Kyle Bradbury, Managing Director, Energy Data Analytics Lab

Graduate Mentors:

Related People

Related Projects

A team of students, led by Electrical and Computer Engineering professor Vahid Tarokh, will develop methods to improve the efficiency of information processing with adaptive decisions according to the structure of new incoming data. Students will have the opportunity to explore data-driven adaptive strategies based on neural networks and statistical learning models, investigate trade-offs between error threshold and computational complexity for various fundamental operations, and implement software prototypes. The outcome of this project can potentially speed up many systems and networks involving data sensing, acquisition, and computation.

Project Leads: Yi Feng, Vahid Tarokh

A team of students will explore new ways of reading pre-modern maps and perspectival views through image tagging, annotation and 3D modeling. Each student will build a typology of icons found in these early maps (for example, houses, churches, roads, rivers, etc.). By extracting, modeling, and cataloging these features, the team will create a library of 2D and 3D objects that will be used to (a) identify patterns in how space and power are represented across these maps, and (b) to create a model for “experiencing” these maps in 3D, using the Unity game engine platform. This is a combined Data+ / Bass Connections project that will instruct students in qualitative and quantitative mapping techniques, basic 3D modeling and the history of cartography.

Project Lead: Philip Stern, Ed Triplett

Project Manager: Sam Horewood

A team of students will explore ways in which data science can help support the mission of Rewriting the Code, a national non-profit organization dedicated to empowering a community of college women with a passion for technology.

In particular, students will perform statistical analyzes of past survey data, build out interactive dashboards that help visualize trends in student experience, and help design future survey questions.

Project Lead: Sue Harnett

Faculty Lead: Alexandra Cooper