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Figure 4: Initial regions of interest selected by the 
prescreener. In the right image, all shapes not 

colored dark blue are initial regions 
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Abstract 
Since 2007, solar photovoltaic (PV) residential and commercial installations in the United 
States have increased by over 1300%, and solar energy has become a significant portion 
of the overall U.S. energy system [1]. Currently, the solar industry lacks information about 
energy capacity at a granular spatial scale. Solar producers, urban planners, energy 
policymakers, and the research community require a ground-truthed, publicly available, 
nationwide, and granular PV installation database for improved decision-making and 
energy system design. 

 To aid the development of such a database, we created a data set of over 13,000 
rooftop solar PV panel arrays using high-resolution orthoimagery. The unique, 
groundbreaking data set will serve as a ground-truth training model for future machine 
learning algorithms that can automatically identify rooftop solar PV. Some preliminary 
algorithm development for identifying solar panel regions with a small training set has 
yielded encouraging results. With a highly accurate algorithm based on our large data set, 
a database of rooftop solar PV can be created by an automated process for the entire U.S. 
and beyond.  
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Introduction  
Currently, information on solar capacity, locations of installations, and energy generated is 
gathered by groups like the Energy Information Administration (EIA) via a variety of 
methods – self-reported surveys, tax rebate applications, reports from utility companies, 
etc. Despite these efforts, the information that exists is incomplete at a disaggregated level 
for the nation as a whole. It is difficult to find up-to-date data with granularity finer than the 
county or utility level. The California Solar Initiative (CSI), for instance, is accompanied by 
a public record of all the applications received for California’s tax rebate program with 
granularity at the zip code level. This can be used to identify which general areas in 
California have higher solar installation densities than others (Figure 1). However, this 
database is limited because not everyone who installed solar in California applied for a tax 
rebate or even made their installation during the years completed by the CSI.  

 A machine learning solution that analyzes orthoimagery (satellite imagery or aerial 
photography taken orthogonal to the surface of the earth) to identify rooftops with solar will 
allow researchers to accurately and precisely map solar energy generation in the United 
States. The true solar capacity of any location in the U.S. and the exact distribution of the 
capacity can also be measured. This information will help system operators better manage 
the grid system, aid energy planners in decision-making as solar energy continues to 
expand, and help policymakers understand why some specific areas in a region 
experience more installations than others. The potential valuable analyses are numerous.  

 To tackle this task, the project team developed a graphical user interface (GUI) 
which eased the process of manually creating an extensive database of training data. 
Several cities in California were chosen based on availability of high resolution 
orthoimagery (less than 0.5 m2), recency of imagery (imagery from within the past three 
years), and density of solar installations (higher density was more desirable and CSI data 
were available to determine density estimates). The ground-truthed training data can now 
be fed into a solar panel identification algorithm, an initial version of which was developed 
separately using a smaller data set.  
 
 

Creation of Data Set 

The data set constructed by our team contains details about more than 13,000 rooftop solar 
panel arrays found in the California cities of Fresno, Stockton, Modesto, and Oxnard. These 
cities have recent, high-resolution orthoimagery available to download from the U.S. 
Geological Survey (USGS) website [2]. We built a graphical user interface from scratch to 
allow us to work through hundreds of large images (typically showing 1.5 km2 each) and to 
precisely mark the areas containing rooftop solar arrays by drawing polygons around these 
regions. Figure 2 demonstrates our GUI in use.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 The result of this ground-truthing process is an immense data set. Figure 3 shows an 
example visualization of all the solar arrays marked as points in a section of the city of 
Fresno. These thousands of data points are in a table format where valuable information 
about each continuous solar array polygon is contained: the latitude and longitude of the 
centroid and vertices of the polygon, the area of the polygon, the pixel positions of the 
centroid and vertices relative to the USGS image containing the polygon, the filename of that 
image, and the city in which the polygon is located.  
 

 

 
 
 

 The cities used have varied geographies and building styles, but further ground-truthing 
in different states would likely form a somewhat stronger training set. However, as it stands, 
our current data set can provide valuable insight to researchers, and we are confident it can 
be used to further develop a strong, scalable solar PV identification algorithm.  

Figure 1: Choropleth map of solar panel installation density by zip code in California 
using data from the California Solar Initiative and created with Google Fusion Tables 

Figure 2: Snapshot of GUI developed for ground-truthing location of solar arrays 

Figure 3: Close-up of an area of Fresno, California with coordinates of centroids of 
ground-truthed solar arrays plotted as red points created with Google Fusion Tables 

In addition to the creation of the data set, significant progress has also been made towards 
developing the machine learning algorithm to detect solar photovoltaic arrays from satellite 
imagery. As this work was conducted in parallel, a smaller set of 100 ground-truthed satellite 
images was used to create and test the algorithm with the vision of ultimately training and 
implementing the algorithm on the larger data set discussed previously. The algorithm itself 
can be broadly defined as two main steps: (1) prescreening each image to select regions of 
high interest, and (2) classification of each region based on its unique features.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 An example of the result of the prescreener is shown in Figure 4 above. However, it 
was noticed that the prescreener retains duplicate or overlapping regions. In order to 
remove these regions, a Mean Shift algorithm was implemented utilizing the centroid of 
each detected region. Through this step, we are able to obtain a set of separate regions for 
each image without any duplicates. After this step, with each potential region containing the 
identified solar panels, the algorithm looks to classify the regions based on three sets of 
features extracted from each of the regions: 

1.  A shape based feature: perimeter/area ratio 
2.  Coloration based features: mean pixel intensity within each channel (RBG) 
3.  Texture based features: Gabor filters with 5 different scales and 8 different 

orientations [3] 
 
 
 
 
 
 
 
 
 
 
 
 
 

 The prescreening step is an 
essential component of the algorithm as it 
helps narrow down regions investigated 
as potential solar arrays within large high 
resolution satellite orthoimages. This has 
the advantage of reducing the processing 
and classification time significantly and of 
allowing the algorithm to scale up easily to 
work on a larger data set. The 
prescreener has three main steps: (1) run 
the Maximally Stable Extremal Regions 
algorithm to extract continuous “blobs” of 
similar pixels, (2) for each of these 
regions, compute a likelihood ratio based 
on two color models, and (3) keep the top 
8-10 regions by likelihood ratio. 

 These results are promising, and 
with the basic algorithm now in place, 
future work will revolve around improving 
performance by fine-tuning the 
prescreener, improving the features 
used for classification, and utilizing the 
larger ground-truth data set to train the 
classifier. Figure 5: ROC curve showing the trade-off of true 

positives and false positives in identifying solar 
panel regions in the test data set. 

 With these features implemented 
along with a simple support vector 
machine classifier, we ran a 100 k-fold 
cross-validation to obtain the receiver 
operating characteristic (ROC) curve, 
as pictured in Figure 5. The test data 
included 53 regions of solar panels and 
266 regions without solar panels, and 
the algorithm was able to obtain a 
False Positive Rate of 7.5% and True 
Positive Rate of 94.34%. 
 


