Urodynamic Data and Machine Learning

Project Summary

Nathaniel Choe (ECE) and Mashal Ali (Neuroscience) spent ten weeks developing machine-learning tools to analyze urodynamic detrusor pressure data of pediatric spina bifida patients from the Duke University Hospital. The team built a pipeline that went from raw time series data to signal analysis to dimension reduction to classification, and has the potential to assist in clinician diagnosis.

 

Click here to read the Executive Summary

 

Faculty Leads: Wilkins Aquino, Jonathan Routh

Project Manager: Zekun Cao

Themes and Categories
Year
2019
Contact
Paul Bendich
Mathematics
bendich@math.duke.edu

Related People

Related Projects

A large and growing trove of patient, clinical, and organizational data is collected as a part of the “Help Desk” program at Durham’s Lincoln Community Health Center. Help Desk is a group of student volunteers who connect with patients over the phone and help them navigate to community resources (like food assistance programs, legal aid, or employment centers). Data-driven approaches to identifying service gaps, understanding the patient population, and uncovering unseen trends are important for improving patient health and advocating for the necessity of these resources. Disparities in food security, economic stability, education, neighborhood and physical environment, community and social context, and access to the healthcare system are crucial social determinants of health, which studies indicate account for nearly 70% of all health outcomes.

A team of students that worked together for a semester in the Mission Driven Startups class will obtain and analyze data to create a predictive maintenance model for F15-E Fighter Jets from Seymour Johnson Air Base. Using data provided by the Base, the Data+ team will evaluate the relationship between unscheduled maintenance and external factors such as weather, sortie hours between repairs, and failure frequency of aircraft components. These findings will then feed into a predictive maintenance model to enhance the Air Force Crew’s ability to anticipate maintenance needs, helping to minimize unscheduled aircraft downtime. 

 

Faculty Lead: Dr. Emma Rasiel

Client Lead: Lt. Devon Burger

Project Manger:  Vignesh Kumaresan

A team of students, led by Electrical and Computer Engineering professor Vahid Tarokh, will develop methods to improve the efficiency of information processing with adaptive decisions according to the structure of new incoming data. Students will have the opportunity to explore data-driven adaptive strategies based on neural networks and statistical learning models, investigate trade-offs between error threshold and computational complexity for various fundamental operations, and implement software prototypes. The outcome of this project can potentially speed up many systems and networks involving data sensing, acquisition, and computation.

Project Leads: Yi Feng, Vahid Tarokh