Team Science

Project Summary

Anne Driscoll (Economics, Statistical Science), and Austin Ferguson (Math, Physics) spent ten weeks examining metrics for inter-departmental cooperativity and productivity, and developing a collaboration network of Duke faculty. This project was sponsored by the Duke Clinical and Translational Science Award, with the larger goal of promoting collaborative success in the School of Medicine and School of Nursing.

Themes and Categories
Year
2016

Project Results

The team utilized data from Scholars@Duke, which contains information on faculty appointments, publications, and grants. The students created a network of faculty in Python, where connections indicated cooperation on publications or grants. They also grouped faculty by inter-departmental cooperativity and productivity, and found that different success metrics led to very different results. Anne and Austin created an interactive visualization tool in Tableau, allowing CTSA members to explore the network, and examine results of various metrics of academic success.

Download the Executive Summary (PDF)

Faculty Lead: Robert Calderbank

Client: Rebecca Moen, Administrative Director, Duke CTSA

Project Manager

Participants

  • Anne Driscoll, Duke University Economics, Statistical Science
  • Austin Ferguson, Duke University Mathematics

Disciplines Involved

  • Pre-med
  • Sociology
  • All lab sciences
  • All quantitative STEM

Related People

Related Projects

The Air Force’s F-15E Strike Eagle jets have parts that wear down and break, causing unscheduled maintenance events that take away valuable time in the air for critical missions and training. Our team, Limitless Data, is working with Seymour Johnson Air Force Base to mine manually entered maintenance data to visualize and predict aircraft failures. We created a prototype data visualization product that will enable maintainers on the flight line and help them identify and repair critical failures before they happen, keeping jets ready to fly, fight and win.

 

Faculty Lead: Dr. Emma Rasiel

Client Lead: Lt. Devon Burger

Project Manger:  Vignesh Kumaresan

This project aims to improve the computational efficiency of signal operations, e.g., sampling and multiplying signals. We design machine learning-based signal processing modules that use an adaptive sampling strategy and interpolation to generate a good approximation of the exact output. While ensuring a low error level, improvements in computational efficiency can be expected for digital signal processing systems using the implemented self-adjusting modules.

Project Leads: Yi Feng, Vahid Tarokh

 

Click here to view the project team's poster

 

Watch the team's final presentation (on Zoom) here:

 

Mapping History has focused on the categorizing, labelling, digitization, and 3D reconstruction of 16th & 17th century maps & atlases of London and Lisbon. Over the course of the summer, the Mapping History team has developed its own unique analytical dataset by painstakingly labelling every element contained within these maps, used python to digitize this dataset, and, now in the projects final stage, has begun the process of reconstructing these historical perspectives in a 3D game engine.

Project Lead: Philip Stern, Ed Triplett

Project Manager: Sam Horewood

 

View the team's final poster here

Watch the team's final presentation (on Zoom) below: