Social Determinants of Health

Project Summary

A team of students led by faculty and researchers at the Social Science Research Institute will bring together data that will facilitate research using social determinants of health (SDH) to examine, understand, and ameliorate health disparities. This project will identify SDH variables that have the potential to be linked to data from the MURDOCK Study, a longitudinal health study based in Cabbarus County, NC. Much of this data – information relevant to understanding socioeconomic status, education, the physical and social environment, employment, and social support networks – is publicly available or easily obtained and its aggregation and analysis offer opportunities to significantly improve predictions of health risks and improve personalized care. Students will evaluate potential data sources, develop ethical policies to protect respondent privacy, clean and merge data, create documentation for data sharing and reuse, and use statistical tools and neighborhood mapping software to examine patterns of disparity.

Contact
Paul Bendich
Mathematics
bendich@math.duke.edu

Disciplines Involved: Sociology, Public Policy, PreHealth/PreMed, Global Health, Environmental Science, all quantitative STEM

Project Lead: Alexandra Cooper

Project Manager: Mara Sedlins

Related People

Related Projects

United Nations Sustainable Development Goal 7 calls for universal access to affordable, reliable, sustainable, and modern energy. Researchers and practitioners around the world have responded to this call by producing a wealth of energy access data. While many data gaps still exist, are we capturing the fullest potential from the information and research we do have, and what it tells us about how to accelerate energy access? Power for All’s Platform for Energy Access Knowledge (PEAK) is an interactive knowledge platform designed to automatically curate, organize, and streamline large, growing bodies of data into digestible, sharable, and useable knowledge through automated data capture, indexing, and visualization. A team of students led by Rebekah Shirley will consult with Power for All to creatively visualize PEAK’s library, and to explore machine learning and natural language processing tools that can enable auto-extraction and visualization of data for more effective science communication.

Are there relative value opportunities in the global corporate bond markets?  
A team of students will work with Professor Emma Rasiel to understand whether an analysis of credit spreads on bonds issued by international firms in multiple countries over time can shed light on potential arbitrage opportunities. The team will have frequent opportunities to interact with analytics professionals at a leading financial advisory and asset management firm.

 

A team of students will consult with a leading financial advisory and asset management firm that is seeking to understand how big data can shed light on the secondary market for construction machinery. Students will explore a combination of publicly-available datasets that describe the used-machinery market and its potential implications as an indicator for the business cycle. There will be frequent interactions with analytical professionals from the firm.