Remembering the Middle Passage

Project Summary

The Middle Passage, the route by which most enslaved persons were brought across the Atlantic to North America, is a critical locus of modern history—yet it has been notoriously difficult to document or memorialize. The ultimate aim of this project is to employ the resources of digital mapping technologies as well as the humanistic methods of history, literature, philosophy, and other disciplines to envision how best to memorialize the enslaved persons who lost their lives between their homelands and North America. To do this, the students combined previously-disparate data and archival sources to discover where on their journeys enslaved persons died. Because of the nature of data itself and the history it represents, the team engaged in on-going conversations about various ways of visualizing its findings, and continuously evaluated the ethics of the data’s provenance and their own methodologies and conclusions. A central goal for the students was to discover what contribution digital data analysis methods could make to the project of remembering itself.

 

The group worked with two datasets: the Trans-Atlantic Slave Trade Database (www.slavevoyages.org), an SPSS-formatted database currently run out of Emory University, containing data on 36,002 individual slaving expeditions between 1514 and 1866; and the Climatological Database for the World’s Oceans 1750-1850 (CLIWOC) (www.kaggle.com/cwiloc/climate-data-from-ocean-ships), a dataset composed of digitized records from the daily logbooks of ocean vessels, originally funded by the European Union in 2001 for purposes of tracking historical climate change. This second dataset includes 280,280 observational records of daily ship locations, climate data, and other associated information. The team employed archival materials to confirm (and disconfirm) overlaps between the two datasets: the students identified 316 ships bearing the same name across the datasets, of which they confirmed 35 matching slaving voyages.

 

The students had two central objectives: first, to locate where and why enslaved Africans died along the Middle Passage, and, second, to analyze patterns in the mortality rates. The group found significant patterns in the mortality data in both spatial and temporal terms (full results can be found here). At the same time, the team also examined the ethics of creating visualizations based on data that were recorded by the perpetrators of the slave trade—opening up space for further developments of this project that would include more detailed archival and theoretical work.

 

Click here to read the Executive Summary

 

Image credit:

J.M.W. Turner, Slave Ship, 1840, Museum of Fine Arts, Boston (public domain)

Faculty Lead: Charlotte Sussman

Project Manager: Emma Davenport

Themes and Categories
Year
2019
Contact
Astrid Giugni
English
astrid.giugni@duke.edu

Related People

Related Projects

A team of students that worked together for a semester in the Mission Driven Startups class will obtain and analyze data to create a predictive maintenance model for F15-E Fighter Jets from Seymour Johnson Air Base. Using data provided by the Base, the Data+ team will evaluate the relationship between unscheduled maintenance and external factors such as weather, sortie hours between repairs, and failure frequency of aircraft components. These findings will then feed into a predictive maintenance model to enhance the Air Force Crew’s ability to anticipate maintenance needs, helping to minimize unscheduled aircraft downtime. 

 

Faculty Lead: Dr. Emma Rasiel

Client Lead: Lt. Devon Burger

Project Manger:  Vignesh Kumaresan

A team of students, led by Electrical and Computer Engineering professor Vahid Tarokh, will develop methods to improve the efficiency of information processing with adaptive decisions according to the structure of new incoming data. Students will have the opportunity to explore data-driven adaptive strategies based on neural networks and statistical learning models, investigate trade-offs between error threshold and computational complexity for various fundamental operations, and implement software prototypes. The outcome of this project can potentially speed up many systems and networks involving data sensing, acquisition, and computation.

Project Leads: Yi Feng, Vahid Tarokh

A team of students will explore new ways of reading pre-modern maps and perspectival views through image tagging, annotation and 3D modeling. Each student will build a typology of icons found in these early maps (for example, houses, churches, roads, rivers, etc.). By extracting, modeling, and cataloging these features, the team will create a library of 2D and 3D objects that will be used to (a) identify patterns in how space and power are represented across these maps, and (b) to create a model for “experiencing” these maps in 3D, using the Unity game engine platform. This is a combined Data+ / Bass Connections project that will instruct students in qualitative and quantitative mapping techniques, basic 3D modeling and the history of cartography.

Project Lead: Philip Stern, Ed Triplett

Project Manager: Sam Horewood