Rare Metabolic Diseases

Project Summary

Zhong Huang (Sociology) and Nishant Iyengar (Biomedical Engineering) spent ten weeks investigating the clinical profiles of rare metabolic diseases. Working with a large dataset provided by the Duke University Health System, the team used natural language processing techniques and produced an R Shiny visualization that enables clinicians to interactively explore diagnosis clusters.

Click here to read the Executive Summary

Themes and Categories
Year
2018
Contact
Paul Bendich
Mathematics
bendich@math.duke.edu

Related People

Related Projects

Brooke Erikson (Economics/Computer Science), Alejandro Ortega (Math), and Jade Wu (Computer Science) spent ten weeks developing open-source tools for automatic document categorization, PDF table extraction, and data identification. Their motivating application was provided by Power for All’s Platform for Energy Access Knowledge, and they frequently collaborated with professionals from that organization.

Click here to read the Executive Summary

 

Jake Epstein (Statistics/Economics), Emre Kiziltug (Economics), and Alexander Rubin (Math/Computer Science) spent ten weeks investigating the existence of relative value opportunities in global corporate bond markets. They worked closely with a dataset provided by a leading asset management firm.

Click here for the Executive Summary

Maksym Kosachevskyy (Economics) and Jaehyun Yoo (Statistics/Economics) spent ten weeks understanding temporal patterns in the used construction machinery market and investigating the relationship between these patterns and macroeconomic trends.

They worked closely with a large dataset provided by MachineryTrader.com, and discussed their findings with analytics professionals from a leading asset management firm.

Click here to read the Executive Summary