Predicting Pancreatic Cancer

Project Summary

Albert Antar(Biology), and Zidi Xiu (Biostatistics) spent ten weeks leveraging Duke Electronic Medical Record (EMR) data to build predictive models of Pancreatic ductal adenocarcinoma (PDAC). PDAC is the 4th leading cause of cancer deaths in the US, and is most often is diagnosed in stage IV, with a survival rate of only 1% and life expectancy measured in months. Diagnosis of PDAC is very challenging due of deep anatomical placement, and significant risk imposed by traditional biopsy. The goal of this project is to utilize EMR data to identify potential avenues for diagnosing PDAC in the early treatable stages of disease.

Themes and Categories
Year
2016

Project Results

The team first constructed a patient timeline leading up to PDAC using diagnostic codes in the EMR data. They then applied a supervised topic model to the diagnosis code data, resulting in highly interpretable groups of diagnoses, and a promising predictive model for pancreatic cancer. The study team is following up with clinical colleagues in the Duke Department of Medicine to initiate further studies based on the team's work.

Download the Executive Summary (PDF)

Faculty Sponsors

Project Manager

  • Shaobo Han, post-doc, Electrical and Computer Engineering

Participants

  • Albert Antar, Duke University Biology
  • Zidi Xiu, Student Mentor, Master's student Biostatistics, Duke University

Disciplines Involved

  • Biostatistics
  • Pre-med
  • All quantitative STEM

Related People

Related Projects

A team of students, led by University Archivist Valerie Gillispie and Professor Don Taylor, will take a closer look at how the student body at Duke has transformed into a coeducational student body from around the world enrolled in ten different schools. Students will seek to transform digital and historical data into a dynamic visual display which allows viewers to examine changes in the student body over time in terms of three dimensions: geographic origin, gender, and school. The students will use born-digital data along with historical, paper-based data to assemble a data corpus. The goal is to demonstrate trends and changes over time in terms of where Duke students have come from, identifying statistically significant shifts and patterns that warrant further study.

Project Leads: Don Taylor, Valerie Gillispie

A team of students led by researchers in the Energy Initiative and the Energy Access Project will explore historical data on the U.S. Electric Farm Equipment (EFE) demonstration show that ran between 1939 and 1941, which aimed to increase usage of electricity in rural areas. Students will compile data collected by the Rural Electrification Agency into a machine-readable form, and then use that data to explore and visualize the EFE’s impact. If time allows, they will then compare data from the EFE and a related, smaller-scale project from 1923 (“Red Wing Project”) to current data on appliance promotion programs in villages in East Africa that have recently gained access to electricity. The outcomes of this analysis would offer evidence on the successes and limitations of these types of programs, and the relevance of the historical U.S. case to countries that are currently facing similar challenges.

Project Leads: Victoria Plutshack, Jonathon Free, Robert Fetter

A team of students led by the Nunn lab and its collaborators will investigate the ecological and behavioral factors that determine parasitism in different species of primates. Based on publicly available data and evolutionary trees, students will investigate parasitism by developing a network of primate-parasite relationships. This network will then be used to infer the ecological and behavioral characteristics that best predict parasitism. The findings are relevant to identifying emerging infectious diseases in humans, and also for conservation efforts globally.

Project Leads: Jim Moody, Charles Nunn

Project Manager: Marie Claire Chelini