Investigating oil and gas production in the United Kingdom

Project Summary

Aaron Chai (Computer Sciece, Math) and Victoria Worsham (Economics, Math) spent ten weeks building tools to understand characteristics of successful oil and gas licenses in the North Sea. The team used data-scraping, merging, and OCR method to create a dataset containing license information and work obligations, and they also produced ArcGIS visualizations of license and well locations. They had the chance to consult frequently with analytics professionals at ExxonMobil.

Click here to read the Executive Summary

 

Project Lead: Kyle Bradbury

Project Manager: Artem Streltsov

Themes and Categories
Year
2019
Contact
Paul Bendich
Mathematics
bendich@math.duke.edu

Related People

Related Projects

Social and environmental contexts are increasingly recognized as factors that impact health outcomes of patients. This team will have the opportunity to collaborate directly with clinicians and medical data in a real-world setting. They will examine the association between social determinants with risk prediction for hospital admissions, and to assess whether social determinants bias that risk in a systematic way. Applied methods will include machine learning, risk prediction, and assessment of bias. This Data+ project is sponsored by the Forge, Duke's center for actionable data science.

Project Leads: Shelly Rusincovitch, Ricardo Henao, Azalea Kim

Project Manager: Austin Talbot

Yueru Li (Math) and Jiacheng Fan (Economics, Finance) spent ten weeks investigating abnormal behavior by companies bidding for oil and gas rights in the Gulf of Mexico. Working with data provided by the Bureau of Ocean Energy Management and ExxonMobil, the team used outlier detection methods to automate the flagging of abnormal behavior, and then used statistical methods to examine various factors that might predict such behavior. They had the chance to consult frequently with analytics professionals at ExxonMobil.

 

Click here to read the Executive Summary

 

Project Lead: Kyle Bradbury

Project Manager: Hyeongyul Roh

Team A: Video data extraction

Alexander Bendeck (Computer Science, Statistics) and Niyaz Nurbhasha (Economics) spent ten weeks building tools to extract player and ball movement in basketball games. Using freely available broadcast-angle video footage which required much cleaning and pre-processing, the team used OpenPose software and employed neural network methodologies. Their pipeline fed into the predictive models of Team C.

Click here to read the Executive Summary

 

Team B: Modeling basketball data: offense

Anshul Shah (Computer Science, Statistics), Jack Lichtenstein (Statistics), and Will Schmidt (Mechanical Engineering) spent ten weeks building tools to analyze offensive play in basketball. Using 2014-5 Duke Men’s Basketball player-tracking data provided by SportVU, the team constructed statistical models that explored the relationship between different metrics of offensive productivity, and also used computational geometry methods to analyze the off-ball “gravity” of an offensive player.

Click here to read the Executive Summary

 

Team C: Modeling basketball data: defense

Lukengu Tshiteya (Statistics), Wenge Xie (ECE), and Joe Zuo (Computer Science, Statistics) spent ten weeks building tools to predict player movement in basketball games. Using SportVU data, including some pre-processed by Team A, the team built predictive RNN models that distinguish between 6 typical movement types, and created interactive visualizations of their findings in R Shiny.

Click here to read the Executive Summary

 

Team D: Visualizing basketball data

Shixing Cao (ECE) and Jackson Hubbard (Computer Science, Statistics) spent ten weeks building visualizations to help analyze basketball games. Using player tracking data from Duke basketball games, the team created visualizations of gameflow, networks of points and assists, and integrated all of their tools into an R Shiny app.

Click here to read the Executive Summary

 

Faculty Leads: Alexander Volfovsky, James Moody, Katherine Heller

Project Managers: Fan Bu, Heather Matthews, Harsh Parikh, Joe Zuo