How do we build and grow a PTA?

Project Summary

Aaron Crouse (Divinity), Mariah Jones (Sociology), Peyton Schafer (Statistics), and Nicholas Simmons (English/Education) spent ten weeks consulting with leadership from the Parents Teacher Association at Glenn Elementary School in Durham. The team set up infrastructure for data collection and visualization that will aid the PTA in forming future strategy.

Click here to read the Executive Summary

Themes and Categories
Year
2018
Contact
Paul Bendich
Mathematics
bendich@math.duke.edu

Disciplines Involved: Public Policy, Sociology, Anthropology, History, Geography, Education, Political Science, Economics

Project Leads: Alec Greenwald, David Vanie (Glenn PTA president)

Project Manager: Aaron Crouse

 

Related People

Related Projects

Social and environmental contexts are increasingly recognized as factors that impact health outcomes of patients. This team will have the opportunity to collaborate directly with clinicians and medical data in a real-world setting. They will examine the association between social determinants with risk prediction for hospital admissions, and to assess whether social determinants bias that risk in a systematic way. Applied methods will include machine learning, risk prediction, and assessment of bias. This Data+ project is sponsored by the Forge, Duke's center for actionable data science.

Project Leads: Shelly Rusincovitch, Ricardo Henao, Azalea Kim

Project Manager: Austin Talbot

Aaron Chai (Computer Sciece, Math) and Victoria Worsham (Economics, Math) spent ten weeks building tools to understand characteristics of successful oil and gas licenses in the North Sea. The team used data-scraping, merging, and OCR method to create a dataset containing license information and work obligations, and they also produced ArcGIS visualizations of license and well locations. They had the chance to consult frequently with analytics professionals at ExxonMobil.

Click here to read the Executive Summary

 

Project Lead: Kyle Bradbury

Project Manager: Artem Streltsov

Yueru Li (Math) and Jiacheng Fan (Economics, Finance) spent ten weeks investigating abnormal behavior by companies bidding for oil and gas rights in the Gulf of Mexico. Working with data provided by the Bureau of Ocean Energy Management and ExxonMobil, the team used outlier detection methods to automate the flagging of abnormal behavior, and then used statistical methods to examine various factors that might predict such behavior. They had the chance to consult frequently with analytics professionals at ExxonMobil.

 

Click here to read the Executive Summary

 

Project Lead: Kyle Bradbury

Project Manager: Hyeongyul Roh