Eye Movements and Food Choice

Project Summary

Biomedical Engineering and Electrical and Computer Engineering major David Brenes, and Electrical and Computer Engineering/Computer Science majors Xingyu Chen and David Yang spent ten weeks working with mobile eye tracker data to optimize data processing and feature extraction. They generated their own video data with SMI Eye Tracking Glasses, and created computer vision algorithms to categorize subject gazing behavior in a grocery purchase decision-making environment.

Themes and Categories
Year
2016

Project Results

The team created feature extraction algorithms using Scale-Invariant Feature Transform (SIFT) and Fast Approximate Nearest Neighbor Search Library (FLANN) computer vision techniques implemented in OpenCV and Python, greatly reducing the manual data processing bottleneck for researchers.

Download the Executive Summary (PDF)

Video Introduction to the Eye Movement and Food Choice Project

Faculty Sponsor

Project Managers

Disciplines Involved

  • Psychology
  • Neuroscience
  • All quantitative STEM

Participants

  • David Brenes, Duke University Biomedical Engineering & Electrical and Computer Engineering
  • David Yang, Duke University Electrical and Computer Engineering & Computer Science
  • Xingyu Chen, Duke University Electrical and Computer Engineering & Computer Science

Videos

Related People

Related Projects

The Air Force’s F-15E Strike Eagle jets have parts that wear down and break, causing unscheduled maintenance events that take away valuable time in the air for critical missions and training. Our team, Limitless Data, is working with Seymour Johnson Air Force Base to mine manually entered maintenance data to visualize and predict aircraft failures. We created a prototype data visualization product that will enable maintainers on the flight line and help them identify and repair critical failures before they happen, keeping jets ready to fly, fight and win.

 

Faculty Lead: Dr. Emma Rasiel

Client Lead: Lt. Devon Burger

Project Manger:  Vignesh Kumaresan

This project aims to improve the computational efficiency of signal operations, e.g., sampling and multiplying signals. We design machine learning-based signal processing modules that use an adaptive sampling strategy and interpolation to generate a good approximation of the exact output. While ensuring a low error level, improvements in computational efficiency can be expected for digital signal processing systems using the implemented self-adjusting modules.

Project Leads: Yi Feng, Vahid Tarokh

 

Click here to view the project team's poster

 

Watch the team's final presentation (on Zoom) here:

 

Mapping History has focused on the categorizing, labelling, digitization, and 3D reconstruction of 16th & 17th century maps & atlases of London and Lisbon. Over the course of the summer, the Mapping History team has developed its own unique analytical dataset by painstakingly labelling every element contained within these maps, used python to digitize this dataset, and, now in the projects final stage, has begun the process of reconstructing these historical perspectives in a 3D game engine.

Project Lead: Philip Stern, Ed Triplett

Project Manager: Sam Horewood

 

View the team's final poster here

Watch the team's final presentation (on Zoom) below: