Eye Movements and Food Choice

Project Summary

Biomedical Engineering and Electrical and Computer Engineering major David Brenes, and Electrical and Computer Engineering/Computer Science majors Xingyu Chen and David Yang spent ten weeks working with mobile eye tracker data to optimize data processing and feature extraction. They generated their own video data with SMI Eye Tracking Glasses, and created computer vision algorithms to categorize subject gazing behavior in a grocery purchase decision-making environment.

Themes and Categories
Year
2016

Project Results

The team created feature extraction algorithms using Scale-Invariant Feature Transform (SIFT) and Fast Approximate Nearest Neighbor Search Library (FLANN) computer vision techniques implemented in OpenCV and Python, greatly reducing the manual data processing bottleneck for researchers.

Download the Executive Summary (PDF)

Video Introduction to the Eye Movement and Food Choice Project

Faculty Sponsor

Project Managers

Disciplines Involved

  • Psychology
  • Neuroscience
  • All quantitative STEM

Participants

  • David Brenes, Duke University Biomedical Engineering & Electrical and Computer Engineering
  • David Yang, Duke University Electrical and Computer Engineering & Computer Science
  • Xingyu Chen, Duke University Electrical and Computer Engineering & Computer Science

Videos

Related People

Related Projects

A team of students, led by Electrical and Computer Engineering professor Vahid Tarokh, will develop methods to improve the efficiency of information processing with adaptive decisions according to the structure of new incoming data. Students will have the opportunity to explore data-driven adaptive strategies based on neural networks and statistical learning models, investigate trade-offs between error threshold and computational complexity for various fundamental operations, and implement software prototypes. The outcome of this project can potentially speed up many systems and networks involving data sensing, acquisition, and computation.

Project Leads: Yi Feng, Vahid Tarokh

A team of students will explore new ways of reading pre-modern maps and perspectival views through image tagging, annotation and 3D modeling. Each student will build a typology of icons found in these early maps (for example, houses, churches, roads, rivers, etc.). By extracting, modeling, and cataloging these features, the team will create a library of 2D and 3D objects that will be used to (a) identify patterns in how space and power are represented across these maps, and (b) to create a model for “experiencing” these maps in 3D, using the Unity game engine platform. This is a combined Data+ / Bass Connections project that will instruct students in qualitative and quantitative mapping techniques, basic 3D modeling and the history of cartography.

Project Lead: Philip Stern, Ed Triplett

Project Manager: Sam Horewood

A team of students will explore ways in which data science can help support the mission of Rewriting the Code, a national non-profit organization dedicated to empowering a community of college women with a passion for technology.

In particular, students will perform statistical analyzes of past survey data, build out interactive dashboards that help visualize trends in student experience, and help design future survey questions.

Project Lead: Sue Harnett

Faculty Lead: Alexandra Cooper