Data-driven Development

Project Summary

Matthew Newman (Sociology), Sonia Xu (Statistics), and Alexandra Zrenner (Economics) spent ten weeks exploring giving patterns and demographic characteristics of anonymized Duke donors. They worked closely with the Duke Alumni Affairs and Development Office, with the goal of understanding the data and constructing tools to generate data-driven insight about donor behavior.

Themes and Categories
Year
2016

Project Results

The team used a variety of statistical techniques to build predictive models of giving behavior, and they also used sophisticated high-dimensional clustering techniques to group donors according to similarity of demographic characteristics and university experience. A key finding was that high-giving and low-giving donors exist in every cluster, an insight which will aid the Development Office in constructing strategies to cultivate future donors.

Download the Executive Summary (PDF)

Client

  • Stephen Bayer, Associate Vice President for University Development
  • Nathalie Spring, Duke University Development

Faculty Sponsor

Project Manager

  • Sheng Jiang, Ph.D. student, Statistics

Participants

Disciplines Involved

  • Economics
  • Psychology
  • All quantitative STEM

"The Data+ program was filled with intelligent people from all different fields, so it was a great learning experience. Furthermore, since we worked in teams, it taught me how to work with others in a more efficient, collaborative, and overall better level. Working to meet our clients' needs, I feel as if I gained real-world work experience in a classroom-like atmosphere (project mentor as my teacher, my group as the students). It is a great transition for people who are unsure of what they want to do with their careers or feel under-qualified to pursue a real internship."

-Sonia Xu, Duke University Statistics

Related People

Related Projects

Alexa Goble (Finance) joined Econ majors Chavez Cheong and Eli Levine in a ten-week exploration of mortgage enforcement actions related to the financial crisis from earlier in this century. Using NLP techniques on mortgage data from Ohio and Massachusetts, the team validated a new experimental approach to understanding the dynamics between state regulatory agencies, mortgage lenders, brokers, and loan originators. This project was a continuation of two previous Data+ projects:

https://bigdata.duke.edu/projects/american-predatory-lending-global-financial-crisis

https://bigdata.duke.edu/projects/american-predatory-lending-and-global-financial-crisis-year-2

 

View the team's project poster here

Watch the team's final presentation on Zoom:

 

Project Lead: Lee Reiners

Project Manager: Malcolm Smith Fraser

Stats/Sociology major Mitchelle Mojekwu joined Neuroscience majors Kassie Hamilton and Zineb Jaidi in a ten-week exploration of data relevant to an upcoming public school zone redistricting in Durham County. Using information acquired from the General Social Survey and the US Census, the team applied modern mathematical and statistical methods for generating proposed redistricting plans, with the aim of providing decision-makers with information they can use to produce school districts that are equitable and reflective of the Durham County student population.

View the team's project poster here

Watch the team's final presentation on Zoom:

 

Faculty Lead: Greg Herschlag

Project Manager: Bernard Coles

 

Pryia Juarez (BME/ECE), Jonathan Pilland (ECE/BME), and Matthew Traum (CS/Econ) spent teen weeks analyzing sensor data synthesized by an agile waveform generator. The team used deep reinforcement learning techniques to understand the performance of different synthetic agents representing potential attackers to the sensor system.

 

View the team's project poster here

Watch the team's final presentation on Zoom:

 

Faculty leads: Robert Calderbank, Vahid Tarokh, Ali Pezeshki

Client leads: Dr. Lauren Huie, Dr. Elizabeth Bentley, Dr. Zola Donovan, Dr. Ashley Prater-Bennette, Dr. Erin Trip

Project Manger: Suya Wu