Data-driven Development

Project Summary

Matthew Newman (Sociology), Sonia Xu (Statistics), and Alexandra Zrenner (Economics) spent ten weeks exploring giving patterns and demographic characteristics of anonymized Duke donors. They worked closely with the Duke Alumni Affairs and Development Office, with the goal of understanding the data and constructing tools to generate data-driven insight about donor behavior.

Themes and Categories
Year
2016

Project Results

The team used a variety of statistical techniques to build predictive models of giving behavior, and they also used sophisticated high-dimensional clustering techniques to group donors according to similarity of demographic characteristics and university experience. A key finding was that high-giving and low-giving donors exist in every cluster, an insight which will aid the Development Office in constructing strategies to cultivate future donors.

Download the Executive Summary (PDF)

Client

  • Stephen Bayer, Associate Vice President for University Development
  • Nathalie Spring, Duke University Development

Faculty Sponsor

Project Manager

Participants

Disciplines Involved

  • Economics
  • Psychology
  • All quantitative STEM

"The Data+ program was filled with intelligent people from all different fields, so it was a great learning experience. Furthermore, since we worked in teams, it taught me how to work with others in a more efficient, collaborative, and overall better level. Working to meet our clients' needs, I feel as if I gained real-world work experience in a classroom-like atmosphere (project mentor as my teacher, my group as the students). It is a great transition for people who are unsure of what they want to do with their careers or feel under-qualified to pursue a real internship."

-Sonia Xu, Duke University Statistics

Related People

Related Projects

The Air Force’s F-15E Strike Eagle jets have parts that wear down and break, causing unscheduled maintenance events that take away valuable time in the air for critical missions and training. Our team, Limitless Data, is working with Seymour Johnson Air Force Base to mine manually entered maintenance data to visualize and predict aircraft failures. We created a prototype data visualization product that will enable maintainers on the flight line and help them identify and repair critical failures before they happen, keeping jets ready to fly, fight and win.

 

Faculty Lead: Dr. Emma Rasiel

Client Lead: Lt. Devon Burger

Project Manger:  Vignesh Kumaresan

This project aims to improve the computational efficiency of signal operations, e.g., sampling and multiplying signals. We design machine learning-based signal processing modules that use an adaptive sampling strategy and interpolation to generate a good approximation of the exact output. While ensuring a low error level, improvements in computational efficiency can be expected for digital signal processing systems using the implemented self-adjusting modules.

Project Leads: Yi Feng, Vahid Tarokh

 

Click here to view the project team's poster

 

Watch the team's final presentation (on Zoom) here:

 

Mapping History has focused on the categorizing, labelling, digitization, and 3D reconstruction of 16th & 17th century maps & atlases of London and Lisbon. Over the course of the summer, the Mapping History team has developed its own unique analytical dataset by painstakingly labelling every element contained within these maps, used python to digitize this dataset, and, now in the projects final stage, has begun the process of reconstructing these historical perspectives in a 3D game engine.

Project Lead: Philip Stern, Ed Triplett

Project Manager: Sam Horewood

 

View the team's final poster here

Watch the team's final presentation (on Zoom) below: