Data-driven Development

Project Summary

Matthew Newman (Sociology), Sonia Xu (Statistics), and Alexandra Zrenner (Economics) spent ten weeks exploring giving patterns and demographic characteristics of anonymized Duke donors. They worked closely with the Duke Alumni Affairs and Development Office, with the goal of understanding the data and constructing tools to generate data-driven insight about donor behavior.

Themes and Categories
Year
2016

Project Results

The team used a variety of statistical techniques to build predictive models of giving behavior, and they also used sophisticated high-dimensional clustering techniques to group donors according to similarity of demographic characteristics and university experience. A key finding was that high-giving and low-giving donors exist in every cluster, an insight which will aid the Development Office in constructing strategies to cultivate future donors.

Download the Executive Summary (PDF)

Client

  • Stephen Bayer, Associate Vice President for University Development
  • Nathalie Spring, Duke University Development

Faculty Sponsor

Project Manager

Participants

Disciplines Involved

  • Economics
  • Psychology
  • All quantitative STEM

"The Data+ program was filled with intelligent people from all different fields, so it was a great learning experience. Furthermore, since we worked in teams, it taught me how to work with others in a more efficient, collaborative, and overall better level. Working to meet our clients' needs, I feel as if I gained real-world work experience in a classroom-like atmosphere (project mentor as my teacher, my group as the students). It is a great transition for people who are unsure of what they want to do with their careers or feel under-qualified to pursue a real internship."

-Sonia Xu, Duke University Statistics

Related People

Related Projects

A team of students that worked together for a semester in the Mission Driven Startups class will obtain and analyze data to create a predictive maintenance model for F15-E Fighter Jets from Seymour Johnson Air Base. Using data provided by the Base, the Data+ team will evaluate the relationship between unscheduled maintenance and external factors such as weather, sortie hours between repairs, and failure frequency of aircraft components. These findings will then feed into a predictive maintenance model to enhance the Air Force Crew’s ability to anticipate maintenance needs, helping to minimize unscheduled aircraft downtime. 

 

Faculty Lead: Dr. Emma Rasiel

Client Lead: Lt. Devon Burger

Project Manger:  Vignesh Kumaresan

A team of students, led by Electrical and Computer Engineering professor Vahid Tarokh, will develop methods to improve the efficiency of information processing with adaptive decisions according to the structure of new incoming data. Students will have the opportunity to explore data-driven adaptive strategies based on neural networks and statistical learning models, investigate trade-offs between error threshold and computational complexity for various fundamental operations, and implement software prototypes. The outcome of this project can potentially speed up many systems and networks involving data sensing, acquisition, and computation.

Project Leads: Yi Feng, Vahid Tarokh

A team of students will explore new ways of reading pre-modern maps and perspectival views through image tagging, annotation and 3D modeling. Each student will build a typology of icons found in these early maps (for example, houses, churches, roads, rivers, etc.). By extracting, modeling, and cataloging these features, the team will create a library of 2D and 3D objects that will be used to (a) identify patterns in how space and power are represented across these maps, and (b) to create a model for “experiencing” these maps in 3D, using the Unity game engine platform. This is a combined Data+ / Bass Connections project that will instruct students in qualitative and quantitative mapping techniques, basic 3D modeling and the history of cartography.

Project Lead: Philip Stern, Ed Triplett

Project Manager: Sam Horewood