Data and Technology for Fact-Checking

Project Summary

Lucas Fagan (Computer Science/Public Policy), Caroline Wang (Computer Science/Math), and Ethan Holland (Statistics/Computer Science) spent ten weeks understanding how data science can contribute to fact-checking methodology. Training on audio data from major news stations, they adapted OpenAI methods to develop a pipeline that moves from audio data to an interface that enables users to search for claims related to other claims that had been previously investigated by fact-checking websites.

This project will continue into the academic year via Bass Connections.

Click here to read the Executive Summary.

Themes and Categories
Year
2018
Contact
Paul Bendich
Mathematics
bendich@math.duke.edu

Disciplines Involved: Political Science, Journalism, Public Policy, Anthropology, all quantitative STEM

Project Lead:  Jun Yang

Project Manager: Yuhao Wen, Brett Walenz

Related People

Related Projects

Social and environmental contexts are increasingly recognized as factors that impact health outcomes of patients. This team will have the opportunity to collaborate directly with clinicians and medical data in a real-world setting. They will examine the association between social determinants with risk prediction for hospital admissions, and to assess whether social determinants bias that risk in a systematic way. Applied methods will include machine learning, risk prediction, and assessment of bias. This Data+ project is sponsored by the Forge, Duke's center for actionable data science.

Project Leads: Shelly Rusincovitch, Ricardo Henao, Azalea Kim

Project Manager: Austin Talbot

Aaron Chai (Computer Sciece, Math) and Victoria Worsham (Economics, Math) spent ten weeks building tools to understand characteristics of successful oil and gas licenses in the North Sea. The team used data-scraping, merging, and OCR method to create a dataset containing license information and work obligations, and they also produced ArcGIS visualizations of license and well locations. They had the chance to consult frequently with analytics professionals at ExxonMobil.

Click here to read the Executive Summary

 

Project Lead: Kyle Bradbury

Project Manager: Artem Streltsov

Yueru Li (Math) and Jiacheng Fan (Economics, Finance) spent ten weeks investigating abnormal behavior by companies bidding for oil and gas rights in the Gulf of Mexico. Working with data provided by the Bureau of Ocean Energy Management and ExxonMobil, the team used outlier detection methods to automate the flagging of abnormal behavior, and then used statistical methods to examine various factors that might predict such behavior. They had the chance to consult frequently with analytics professionals at ExxonMobil.

 

Click here to read the Executive Summary

 

Project Lead: Kyle Bradbury

Project Manager: Hyeongyul Roh