Big Data for Reproductive Health (BD4RH Year 2)

Project Summary

Dennis Harrsch, Jr. ( Computer Science ), Elizabeth Loschiavo ( Sociology ), and Zhixue (Mary) Wang ( Computer Science, Statistics ) spent ten weeks improving upon the team’s web platform that allows users to examine contraceptive use in low and middle income (LMIC) countries collected by the Demographic and Health Survey (DHS) contraceptive calendar. The team improved load times, data visualization latency, and increased the number of country surveys available in the platform from 3 to 55. The team also created a new app that allows users to explore the results of machine learning using this big data set.

This project will continue into the academic year via Bass Connections where student teams will refine the machine learning model results and explore the question of whether and how policymakers can use these tools to improve family planning in LMIC settings.

 

Click here to view the Executive Summary

 

Faculty Lead: Megan Huchko

Project Manager: Amy Finnegan

Themes and Categories
Year
2019
Contact
Paul Bendich
Mathematics
bendich@math.duke.edu

Related People

Related Projects

Alexa Goble (Finance) joined Econ majors Chavez Cheong and Eli Levine in a ten-week exploration of mortgage enforcement actions related to the financial crisis from earlier in this century. Using NLP techniques on mortgage data from Ohio and Massachusetts, the team validated a new experimental approach to understanding the dynamics between state regulatory agencies, mortgage lenders, brokers, and loan originators. This project was a continuation of two previous Data+ projects:

https://bigdata.duke.edu/projects/american-predatory-lending-global-financial-crisis

https://bigdata.duke.edu/projects/american-predatory-lending-and-global-financial-crisis-year-2

 

View the team's project poster here

Watch the team's final presentation on Zoom:

 

Project Lead: Lee Reiners

Project Manager: Malcolm Smith Fraser

Stats/Sociology major Mitchelle Mojekwu joined Neuroscience majors Kassie Hamilton and Zineb Jaidi in a ten-week exploration of data relevant to an upcoming public school zone redistricting in Durham County. Using information acquired from the General Social Survey and the US Census, the team applied modern mathematical and statistical methods for generating proposed redistricting plans, with the aim of providing decision-makers with information they can use to produce school districts that are equitable and reflective of the Durham County student population.

View the team's project poster here

Watch the team's final presentation on Zoom:

 

Faculty Lead: Greg Herschlag

Project Manager: Bernard Coles

 

Pryia Juarez (BME/ECE), Jonathan Pilland (ECE/BME), and Matthew Traum (CS/Econ) spent teen weeks analyzing sensor data synthesized by an agile waveform generator. The team used deep reinforcement learning techniques to understand the performance of different synthetic agents representing potential attackers to the sensor system.

 

View the team's project poster here

Watch the team's final presentation on Zoom:

 

Faculty leads: Robert Calderbank, Vahid Tarokh, Ali Pezeshki

Client leads: Dr. Lauren Huie, Dr. Elizabeth Bentley, Dr. Zola Donovan, Dr. Ashley Prater-Bennette, Dr. Erin Trip

Project Manger: Suya Wu