Big Data for Reproductive Health (BD4RH Year 2)

Project Summary

Dennis Harrsch, Jr. ( Computer Science ), Elizabeth Loschiavo ( Sociology ), and Zhixue (Mary) Wang ( Computer Science, Statistics ) spent ten weeks improving upon the team’s web platform that allows users to examine contraceptive use in low and middle income (LMIC) countries collected by the Demographic and Health Survey (DHS) contraceptive calendar. The team improved load times, data visualization latency, and increased the number of country surveys available in the platform from 3 to 55. The team also created a new app that allows users to explore the results of machine learning using this big data set.

This project will continue into the academic year via Bass Connections where student teams will refine the machine learning model results and explore the question of whether and how policymakers can use these tools to improve family planning in LMIC settings.

 

Click here to view the Executive Summary

 

Faculty Lead: Megan Huchko

Project Manager: Amy Finnegan

Themes and Categories
Year
2019
Contact
Paul Bendich
Mathematics
bendich@math.duke.edu

Related People

Related Projects

A large and growing trove of patient, clinical, and organizational data is collected as a part of the “Help Desk” program at Durham’s Lincoln Community Health Center. Help Desk is a group of student volunteers who connect with patients over the phone and help them navigate to community resources (like food assistance programs, legal aid, or employment centers). Data-driven approaches to identifying service gaps, understanding the patient population, and uncovering unseen trends are important for improving patient health and advocating for the necessity of these resources. Disparities in food security, economic stability, education, neighborhood and physical environment, community and social context, and access to the healthcare system are crucial social determinants of health, which studies indicate account for nearly 70% of all health outcomes.

The Air Force’s F-15E Strike Eagle jets have parts that wear down and break, causing unscheduled maintenance events that take away valuable time in the air for critical missions and training. Our team, Limitless Data, is working with Seymour Johnson Air Force Base to mine manually entered maintenance data to visualize and predict aircraft failures. We created a prototype data visualization product that will enable maintainers on the flight line and help them identify and repair critical failures before they happen, keeping jets ready to fly, fight and win.

 

Faculty Lead: Dr. Emma Rasiel

Client Lead: Lt. Devon Burger

Project Manger:  Vignesh Kumaresan

This project aims to improve the computational efficiency of signal operations, e.g., sampling and multiplying signals. We design machine learning-based signal processing modules that use an adaptive sampling strategy and interpolation to generate a good approximation of the exact output. While ensuring a low error level, improvements in computational efficiency can be expected for digital signal processing systems using the implemented self-adjusting modules.

Project Leads: Yi Feng, Vahid Tarokh

 

Click here to view the project team's poster

 

Watch the team's final presentation (on Zoom) here: