Basketball analytics pipeline---from raw video to dynamic visualization

Project Summary

Team A: Video data extraction

Alexander Bendeck (Computer Science, Statistics) and Niyaz Nurbhasha (Economics) spent ten weeks building tools to extract player and ball movement in basketball games. Using freely available broadcast-angle video footage which required much cleaning and pre-processing, the team used OpenPose software and employed neural network methodologies. Their pipeline fed into the predictive models of Team C.

Click here to read the Executive Summary

 

Team B: Modeling basketball data: offense

Anshul Shah (Computer Science, Statistics), Jack Lichtenstein (Statistics), and Will Schmidt (Mechanical Engineering) spent ten weeks building tools to analyze offensive play in basketball. Using 2014-5 Duke Men’s Basketball player-tracking data provided by SportVU, the team constructed statistical models that explored the relationship between different metrics of offensive productivity, and also used computational geometry methods to analyze the off-ball “gravity” of an offensive player.

Click here to read the Executive Summary

 

Team C: Modeling basketball data: defense

Lukengu Tshiteya (Statistics), Wenge Xie (ECE), and Joe Zuo (Computer Science, Statistics) spent ten weeks building tools to predict player movement in basketball games. Using SportVU data, including some pre-processed by Team A, the team built predictive RNN models that distinguish between 6 typical movement types, and created interactive visualizations of their findings in R Shiny.

Click here to read the Executive Summary

 

Team D: Visualizing basketball data

Shixing Cao (ECE) and Jackson Hubbard (Computer Science, Statistics) spent ten weeks building visualizations to help analyze basketball games. Using player tracking data from Duke basketball games, the team created visualizations of gameflow, networks of points and assists, and integrated all of their tools into an R Shiny app.

Click here to read the Executive Summary

 

Faculty Leads: Alexander Volfovsky, James Moody, Katherine Heller

Project Managers: Fan Bu, Heather Matthews, Harsh Parikh, Joe Zuo

Themes and Categories
Year
2019
Contact
Paul Bendich
Mathematics
bendich@math.duke.edu

Related People

Related Projects

A team of students collaborating with Duke School of Medicine's Root Causes Fresh Produce Program, community members, and physicians throughout the Duke Health network will help integrate data from food deliveries to Duke Health patients with patient health record data and other available data sources to create a dashboard that can analyze, predict, and manage the Root Causes' "Food as Medicine" program. Specific outcomes will contribute to improving the Program's quantitative evaluation of its health impact as well as efficiency and satisfaction for its patients. Students will be assisted with IRB approval and mentorship from faculty and community advisors.

Project Leads: Esko Brummel, Willis Wong

 

A team of students led by researchers at the Duke Marine Lab will explore the changing distribution of krill around the Antarctic Peninsula. Krill are a key prey species in this ecosystem, supporting a number of animals including whales, seals, and penguins, but they are dependent on winter sea ice and may be in trouble as climate change progresses. Using data from acoustic zooplankton surveys, students will create maps and other products to visualize the spatial distribution of krill over the past 20 summers, then create metrics that allow us to quantify the way that krill distribution around the Antarctic Peninsula is changing as the climate shifts and ice melts. These results will be key to our understanding of the impacts of climate change on this polar ecosystem.

 

Project Lead: Douglas Nowacek

Project Manager: Amanda Lohmann

 

A team of students will partner closely with the City of Durham's newly formed Community Safety Department.  The Community Safety Department's mission is to identify, implement, and evaluate new approaches to enhance public safety that may not involve a law enforcement response or the criminal justice system. The student team will (1) analyze and identify geographic and temporal patterns in 911 calls for service, (2) conceptualize and build an abstracted data pipeline and tools that would enrich currently available 911 data with other social, economic, and health-related data, (3) explore associations between areas of high call volume, indicators of mental health distress, and histories of dispossession; and (4) identify methods by which future researchers could examine connections between varied 911 incident responses (e.g. police response, unarmed response, joint police, and mental health response) and life trajectories (e.g. arrest, jail time, hospitalization, unemployment, etc.).

 

Project Lead: Greg Herschlag, Anise Van, City of Durham

Project Manager: Deekshita Saikia