Application of Linear Algebra in Infants’ Autism Detection

Project Summary

Dr. Guillermo Sapiro, professor in Pratt School of Engineering at Duke University, conducts ongoing autism research. Using image processing, he attempts to program a computer to detect whether babies (around eight to 14 months of age) display a sign of autism. This very early detection enables doctors to train these babies (when their brain plasticity is high) to behave in ways to counter the behavioral limitations autism imposes, thus allowing these babies to act more normally as they grow up. 

Themes and Categories
Year
Contact
Paul Bendich
bendich@math.duke.edu

Graduate students: Edward Kim, Hyunsoo Kim, and Zhuoqing Chang 

  • Unusual blinking pattern is a possible sign of autism.
  • Goal: Develop a method to detect the eye state (open/closed) from a 30x30 pixel eye image.
  • Method: Use 7,000 training eye images to learn the relationship between each pixel and eye state; then test the system on 3,000 new images.
  • Students learn a method to solve an overdetermined system (using Moore-Penrose pseudoinverse to find the least squares solution).

Summary

One of the behavioral cues Dr. Sapiro looks for is the blinking of the babies’ eyes. This portion of the lecture notes focuses on the creation of an image processing algorithm for the detection of the blinking, in particular for the determination of whether an eye is open or closed, by applying concepts of linear algebra.

The input to the algorithm is a picture of an eye. Each input image consists of 30(width) x30(height)= 900 pixels. Each pixel carries a numerical value in the range of 0 to 255, which represents the combination light intensity detected by the red, blue, and green light receptor channels of a camera. The significance of each pixel varies. The image of an open eye will have two major dark edges around the eyes with a large pupil in the middle. On the other hand, the image of a closed eye will have only one dark edge with no pupil. There is a pattern associated with each of these two categories of images.

The challenge for the algorithm is to determine the pattern from the pixel data with a high probability of success. In our model, this is achieved with the aid of properly chosen weights for the individual pixels. The determination between an open or closed eye is then made in the following simple way. The algorithm multiplies the numerical pixel value by the pixel weight and then sums these products over all pixels. If the result of the summation is positive, the output of the algorithm is the integer ’1’ and the eye is determined to be open. If the sum is negative, the output of the algorithm is the integer ’-1’ and the eye is determined to be closed. 

Read more about this project (PDF).

Related Projects

This Data Expedition introduces students to network tools and approaches and invites students to consider the relationship(s) between social networks and social imaginaries. Using foundation-funding data that was collected from the The Foundation Directory Online, the Data Expedition enables students to visualize and explore the relationship between networks, social imaginaries, and funding for higher education. The Data Expedition is based on two sets of data. The first set list the grants received by Duke University in 2016 from five foundations: The Bill and Melinda Gates Foundation, Fidelity Charitable Gift Fund, Silicon Valley Community Foundation, The Community Foundation of Western North Carolina, and The Robert Wood Johnson Foundation. The second set lists the names of board members from Duke University and each of these five foundations along with the degree granting institution for their undergraduate education. For the sake of this exercise, the degree granting institutions data was fabricated from a randomized list of the top twenty-five undergraduate institutions.

This Data Expedition seeks to introduce students to statistical analysis in the field of international development. Students construct a index of wealth/poverty based on asset holdings using four datasets collected under the umbrella of the Living Standards Measurement Survey project at the World Bank. We selected countries to represent different continents with comparable and recent survey data: Bulgaria (2007), Tajikistan (2009), Tanzania (2010-2011), and Panama (2008).

First, we construct an index of wealth based on household assets in the different countries using Principle Components Analysis. Once a poverty index is constructed, students seek to understand what the main drivers of wealth/poverty are in different countries. We include variables for health, education, age, relationship to the household head, and sex. Students then use regression analysis to identify the main drivers of poverty in different countries.

This data expedition explores the local (ego) patent citation networks of three hybrid vehicle-related patents. The concept of patent citations and technological development is a core theme in innovation and entrepreneurship, and the purpose of these network explorations is to both quantitatively and visually assess how innovations are connected and what these connections mean for the focal innovations and the technologies that draw on those patents in the future. The expedition was incorporated as part of the Sociology of Entrepreneurship class, where students are thinking about the emergence and diffusion of innovations.