Taking electrification on the road: Exploring the impact of the Electric Farm Equipment roadshow

Project Summary

Between 1935 and 1945, rural electricity access shot up from roughly 10% to 90%. During this time, the Rural Electrification Administration funded an Electric Farm Equipment (EFE) Roadshow as part of its mission to expand electricity access and demand. Digitizing massive amounts of archival data, our team has sought to quantify the effect of the EFE Roadshow on the larger trend of growing residential electricity consumption in rural U.S. towns from 1938 to 1945. We hope that understanding this crucial chapter in our own history will help inform present-day electrification efforts in the developing world.

 

Project Leads: Victoria Plutshack, Jonathon Free, Robert Fetter

 

View the team's final project summary here

 

Watch the team's final presentation (on Zoom) here:

Year
2020
Contact
Paul Bendich
Mathematics
bendich@math.duke.edu

Related People

Related Projects

The Air Force’s F-15E Strike Eagle jets have parts that wear down and break, causing unscheduled maintenance events that take away valuable time in the air for critical missions and training. Our team, Limitless Data, is working with Seymour Johnson Air Force Base to mine manually entered maintenance data to visualize and predict aircraft failures. We created a prototype data visualization product that will enable maintainers on the flight line and help them identify and repair critical failures before they happen, keeping jets ready to fly, fight and win.

 

Faculty Lead: Dr. Emma Rasiel

Client Lead: Lt. Devon Burger

Project Manger:  Vignesh Kumaresan

This project aims to improve the computational efficiency of signal operations, e.g., sampling and multiplying signals. We design machine learning-based signal processing modules that use an adaptive sampling strategy and interpolation to generate a good approximation of the exact output. While ensuring a low error level, improvements in computational efficiency can be expected for digital signal processing systems using the implemented self-adjusting modules.

Project Leads: Yi Feng, Vahid Tarokh

 

Click here to view the project team's poster

 

Watch the team's final presentation (on Zoom) here:

 

Mapping History has focused on the categorizing, labelling, digitization, and 3D reconstruction of 16th & 17th century maps & atlases of London and Lisbon. Over the course of the summer, the Mapping History team has developed its own unique analytical dataset by painstakingly labelling every element contained within these maps, used python to digitize this dataset, and, now in the projects final stage, has begun the process of reconstructing these historical perspectives in a 3D game engine.

Project Lead: Philip Stern, Ed Triplett

Project Manager: Sam Horewood

 

View the team's final poster here

Watch the team's final presentation (on Zoom) below: