Smart(er) Routing at Theme Parks

Project Summary

Runliang Li (Math), Qiyuan Pan (Computer Science), and Lei Qian (Masters in Statistics and Economic Modelling) spent ten weeks investigating discrepancies between posted wait times and actual wait times for rides at Disney World. They worked with data provided by TouringPlans.

Themes and Categories
Year
2016

Project Results

The team built a linear regression model to predict future wait times on given rides based on historical wait times on many other rides, time of day, season, and many other factors. Their model was informed by a lot of exploratory data analysis, as well as much data cleaning and merging.

Download the Executive Summary (PDF)

Faculty Sponsors

Participants

  • Qiyuan Pan, Duke University Computer Science
  • Runliang Li, Duke University Computer Science & Mathematics
  • Lei Qian, Duke University Statistical and Economic Modeling

Project Manager

Disciplines Involved

  • Business Analytics
  • Operations Research
  • All quantitative STEM

Related People

Related Projects

Alexa Goble (Finance) joined Econ majors Chavez Cheong and Eli Levine in a ten-week exploration of mortgage enforcement actions related to the financial crisis from earlier in this century. Using NLP techniques on mortgage data from Ohio and Massachusetts, the team validated a new experimental approach to understanding the dynamics between state regulatory agencies, mortgage lenders, brokers, and loan originators. This project was a continuation of two previous Data+ projects:

https://bigdata.duke.edu/projects/american-predatory-lending-global-financial-crisis

https://bigdata.duke.edu/projects/american-predatory-lending-and-global-financial-crisis-year-2

 

View the team's project poster here

Watch the team's final presentation on Zoom:

 

Project Lead: Lee Reiners

Project Manager: Malcolm Smith Fraser

Stats/Sociology major Mitchelle Mojekwu joined Neuroscience majors Kassie Hamilton and Zineb Jaidi in a ten-week exploration of data relevant to an upcoming public school zone redistricting in Durham County. Using information acquired from the General Social Survey and the US Census, the team applied modern mathematical and statistical methods for generating proposed redistricting plans, with the aim of providing decision-makers with information they can use to produce school districts that are equitable and reflective of the Durham County student population.

View the team's project poster here

Watch the team's final presentation on Zoom:

 

Faculty Lead: Greg Herschlag

Project Manager: Bernard Coles

 

Pryia Juarez (BME/ECE), Jonathan Pilland (ECE/BME), and Matthew Traum (CS/Econ) spent teen weeks analyzing sensor data synthesized by an agile waveform generator. The team used deep reinforcement learning techniques to understand the performance of different synthetic agents representing potential attackers to the sensor system.

 

View the team's project poster here

Watch the team's final presentation on Zoom:

 

Faculty leads: Robert Calderbank, Vahid Tarokh, Ali Pezeshki

Client leads: Dr. Lauren Huie, Dr. Elizabeth Bentley, Dr. Zola Donovan, Dr. Ashley Prater-Bennette, Dr. Erin Trip

Project Manger: Suya Wu