Smart(er) Routing at Theme Parks

Project Summary

Runliang Li (Math), Qiyuan Pan (Computer Science), and Lei Qian (Masters in Statistics and Economic Modelling) spent ten weeks investigating discrepancies between posted wait times and actual wait times for rides at Disney World. They worked with data provided by TouringPlans.

Themes and Categories
Year
2016

Project Results

The team built a linear regression model to predict future wait times on given rides based on historical wait times on many other rides, time of day, season, and many other factors. Their model was informed by a lot of exploratory data analysis, as well as much data cleaning and merging.

Download the Executive Summary (PDF)

Faculty Sponsors

Participants

  • Qiyuan Pan, Duke University Computer Science
  • Runliang Li, Duke University Computer Science & Mathematics
  • Lei Qian, Duke University Statistical and Economic Modeling

Project Manager

Disciplines Involved

  • Business Analytics
  • Operations Research
  • All quantitative STEM

Related People

Related Projects

The Air Force’s F-15E Strike Eagle jets have parts that wear down and break, causing unscheduled maintenance events that take away valuable time in the air for critical missions and training. Our team, Limitless Data, is working with Seymour Johnson Air Force Base to mine manually entered maintenance data to visualize and predict aircraft failures. We created a prototype data visualization product that will enable maintainers on the flight line and help them identify and repair critical failures before they happen, keeping jets ready to fly, fight and win.

 

Faculty Lead: Dr. Emma Rasiel

Client Lead: Lt. Devon Burger

Project Manger:  Vignesh Kumaresan

This project aims to improve the computational efficiency of signal operations, e.g., sampling and multiplying signals. We design machine learning-based signal processing modules that use an adaptive sampling strategy and interpolation to generate a good approximation of the exact output. While ensuring a low error level, improvements in computational efficiency can be expected for digital signal processing systems using the implemented self-adjusting modules.

Project Leads: Yi Feng, Vahid Tarokh

 

Click here to view the project team's poster

 

Watch the team's final presentation (on Zoom) here:

 

Mapping History has focused on the categorizing, labelling, digitization, and 3D reconstruction of 16th & 17th century maps & atlases of London and Lisbon. Over the course of the summer, the Mapping History team has developed its own unique analytical dataset by painstakingly labelling every element contained within these maps, used python to digitize this dataset, and, now in the projects final stage, has begun the process of reconstructing these historical perspectives in a 3D game engine.

Project Lead: Philip Stern, Ed Triplett

Project Manager: Sam Horewood

 

Watch the team's final presentation (on Zoom) below: