Pirating Texts

Project Summary

In tracing the publication history, geographical spread, and content of “pirated” copies of Daniel Defoe’s Robinson Crusoe, Gabriel Guedes (Math, Global Cultural Studies), Lucian Li (Computer Science, History), and Orgil Batzaya (Math, Computer Science) explored the complications of looking at a data set that saw drastic changes over the last three centuries in terms of spelling and grammar, which offered new challenges to data cleanup. By asking questions of the effectiveness of “distant reading” techniques for comparing thousands of different editions of Robinson Crusoe, the students learned how to think about the appropriateness of myriad computational methods like doc2vec and topic modeling. Through these methods, the students started to ask, at what point does one start seeing patterns that were invisible at a human scale of reading (reading one book at a time)? While the project did not definitively answer these questions, it did provide paths for further inquiry.

The team published their results at: https://orgilbatzaya.github.io/pirating-texts-site/

Click here for the Executive Summary

Themes and Categories
Year
2018
Contact
Paul Bendich
Mathematics
bendich@math.duke.edu

Disciplines Involved: English, Literature, History, Geography, Visual & Media Studies

Project Lead: Charlotte Sussman

Project Manager: Grant Glass

This project aimed at further exploring how to better develop different methods for doing humanities based research by combining the open-ended nature of humanities projects with the methodological rigor of fields like statistics and computer science. Lucuan Li noticed the potential for finding new ways to link these methods to the humanities: “The open-endedness gave us tremendous freedom to determine our modes of analysis and which parts of the data we would use.” Orgil Batzaya found drawing links between data insights and historical facts compelling: “We looked at distributions of the concentration of publication in different countries and it was fun trying to link historical periods to peaks and troughs in publication.” Some of these links became profoundly obvious according to Gabe Guedes: “As for the final outcome, I was surprised to be able to see such a strong correlation between historical events and publication volume, to the point where you had very noticeable peaks when countries made substantial imperial forays.”

The team was directed and mentored by Grant Glass, a graduate student in the English Department at UNC-CH. Grant’s own research focuses on the question, what is a text? This project allowed Grant to begin to form the data structure for creating a new edition of Robinson Crusoe by understanding how thousands of copies are related to one another. The experience and insights took Grant by surprise: “I did not think that there was as much variance between the copies as there was. This new understanding of the text will help me describe how reading publics, publishers, and editors shape the text long after the author is gone.”

Related People

Related Projects

Brooke Erikson (Economics/Computer Science), Alejandro Ortega (Math), and Jade Wu (Computer Science) spent ten weeks developing open-source tools for automatic document categorization, PDF table extraction, and data identification. Their motivating application was provided by Power for All’s Platform for Energy Access Knowledge, and they frequently collaborated with professionals from that organization.

Click here to read the Executive Summary

 

Jake Epstein (Statistics/Economics), Emre Kiziltug (Economics), and Alexander Rubin (Math/Computer Science) spent ten weeks investigating the existence of relative value opportunities in global corporate bond markets. They worked closely with a dataset provided by a leading asset management firm.

Click here for the Executive Summary

Maksym Kosachevskyy (Economics) and Jaehyun Yoo (Statistics/Economics) spent ten weeks understanding temporal patterns in the used construction machinery market and investigating the relationship between these patterns and macroeconomic trends.

They worked closely with a large dataset provided by MachineryTrader.com, and discussed their findings with analytics professionals from a leading asset management firm.

Click here to read the Executive Summary