Open Data for Tobacco Retailer Mapping

Project Summary

Felicia Chen (Computer Science, Statistics), Nikkhil Pulimood (Computer Science, Mathematics), and James Wang (Statistics, Public Policy) spent ten weeks working with Counter Tools, a local nonprofit that provides support to over a dozen state health departments. The project goal was to understand how open source data can lead to the creation of a national database of tobacco retailers.

Themes and Categories
Year
2017
Contact
Paul Bendich
Mathematics
bendich@math.duke.edu

Project Results: The team performed a feasibility study involving questions of technical accuracy and cost-effectiveness. Working mostly in R, they used a combination of web-scraping for data collection, machine-learning and text mining for data classification, and MTurk for human validation, and were able to construct a viable dataset for North Carolina.

They presented findings at an informal briefing of civic leaders and planning officials.

Partially funded by Counter Tools

Click here for the Executive Summary

Project Lead & Project ManagerMike Dolan Fliss, Counter Tools

 
 


 

"Coming in, I had little knowledge about what data science research entailed. Participating in Data+ was a great step and helped me better realize my career goals. I learned a host of interdisciplinary skills - ranging from web scraping to survey design – that can definitely be applied to future projects." — Felicia Chen, Computer Science & Public Policy

Related People

Related Projects

Social and environmental contexts are increasingly recognized as factors that impact health outcomes of patients. This team will have the opportunity to collaborate directly with clinicians and medical data in a real-world setting. They will examine the association between social determinants with risk prediction for hospital admissions, and to assess whether social determinants bias that risk in a systematic way. Applied methods will include machine learning, risk prediction, and assessment of bias. This Data+ project is sponsored by the Forge, Duke's center for actionable data science.

Project Leads: Shelly Rusincovitch, Ricardo Henao, Azalea Kim

Project Manager: Austin Talbot

Aaron Chai (Computer Sciece, Math) and Victoria Worsham (Economics, Math) spent ten weeks building tools to understand characteristics of successful oil and gas licenses in the North Sea. The team used data-scraping, merging, and OCR method to create a dataset containing license information and work obligations, and they also produced ArcGIS visualizations of license and well locations. They had the chance to consult frequently with analytics professionals at ExxonMobil.

Click here to read the Executive Summary

 

Project Lead: Kyle Bradbury

Project Manager: Artem Streltsov

Yueru Li (Math) and Jiacheng Fan (Economics, Finance) spent ten weeks investigating abnormal behavior by companies bidding for oil and gas rights in the Gulf of Mexico. Working with data provided by the Bureau of Ocean Energy Management and ExxonMobil, the team used outlier detection methods to automate the flagging of abnormal behavior, and then used statistical methods to examine various factors that might predict such behavior. They had the chance to consult frequently with analytics professionals at ExxonMobil.

 

Click here to read the Executive Summary

 

Project Lead: Kyle Bradbury

Project Manager: Hyeongyul Roh