Night Vision

Project Summary

Joel Tewksbury (BME) and Miriam Goldman (Math and Statistics, Arizona State University) spent ten weeks analyzing time-series darkness visual adaptation scores from over 1200 study participants to identify trends in night vision, and ultimately genetic markers that might confer a visual advantage.

Themes and Categories
Year
2016

Project Results

The team analyzed FrACT (Freiburg Visual Test) visual acuity and contrast data over time as subjects  adjusted to the dark in order to better understand healthy scotopic (night) vision. They found that speed of darkness adaptation appears to be highly variable, and that these data do not suggest speed of darkness adaptation relates to an individuals' final ability to see in the dark. The team did find a small number of genetic markers associated with improved night vision, which will be pursued further in future work by the study team.

Download the Executive Summary (PDF)

Article on Night Vision Team https://bassconnections.duke.edu/about/news/data-research-teams-focus-timing

Faculty Sponsor

Project Manager

Participants

  • Miriam Goldman, Arizona State University Statistics & Mathematics
  • Joel Tewksbury, Duke University Biomedical Engineering

Disciplines Involved

  • Pre-med
  • Biology
  • Biostatistics
  • All quantitative STEM

"I don't know if it's because I was on maternity leave for the first half or if they were just really good, but I felt like being involved took no effort on my part at all, and I got cool results without having to put much time in. It was a lot more fruitful than I had expected. Also it was fun to see the students learn scientific skills: they both told me they got an awful lot out of the program." Liz Cirulli, Assistant Research Professor in Molecular Genetics and Microbiology

Related People

Related Projects

The Air Force’s F-15E Strike Eagle jets have parts that wear down and break, causing unscheduled maintenance events that take away valuable time in the air for critical missions and training. Our team, Limitless Data, is working with Seymour Johnson Air Force Base to mine manually entered maintenance data to visualize and predict aircraft failures. We created a prototype data visualization product that will enable maintainers on the flight line and help them identify and repair critical failures before they happen, keeping jets ready to fly, fight and win.

 

Faculty Lead: Dr. Emma Rasiel

Client Lead: Lt. Devon Burger

Project Manger:  Vignesh Kumaresan

This project aims to improve the computational efficiency of signal operations, e.g., sampling and multiplying signals. We design machine learning-based signal processing modules that use an adaptive sampling strategy and interpolation to generate a good approximation of the exact output. While ensuring a low error level, improvements in computational efficiency can be expected for digital signal processing systems using the implemented self-adjusting modules.

Project Leads: Yi Feng, Vahid Tarokh

 

Click here to view the project team's poster

 

Watch the team's final presentation (on Zoom) here:

 

Mapping History has focused on the categorizing, labelling, digitization, and 3D reconstruction of 16th & 17th century maps & atlases of London and Lisbon. Over the course of the summer, the Mapping History team has developed its own unique analytical dataset by painstakingly labelling every element contained within these maps, used python to digitize this dataset, and, now in the projects final stage, has begun the process of reconstructing these historical perspectives in a 3D game engine.

Project Lead: Philip Stern, Ed Triplett

Project Manager: Sam Horewood

 

View the team's final poster here

Watch the team's final presentation (on Zoom) below: