Night Vision

Project Summary

Joel Tewksbury (BME) and Miriam Goldman (Math and Statistics, Arizona State University) spent ten weeks analyzing time-series darkness visual adaptation scores from over 1200 study participants to identify trends in night vision, and ultimately genetic markers that might confer a visual advantage.

Themes and Categories
Year
2016

Project Results

The team analyzed FrACT (Freiburg Visual Test) visual acuity and contrast data over time as subjects  adjusted to the dark in order to better understand healthy scotopic (night) vision. They found that speed of darkness adaptation appears to be highly variable, and that these data do not suggest speed of darkness adaptation relates to an individuals' final ability to see in the dark. The team did find a small number of genetic markers associated with improved night vision, which will be pursued further in future work by the study team.

Download the Executive Summary (PDF)

Article on Night Vision Team https://bassconnections.duke.edu/about/news/data-research-teams-focus-timing

Faculty Sponsor

Project Manager

  • James Murphy, visitng professor, Mathematics

Participants

  • Miriam Goldman, Arizona State University Statistics & Mathematics
  • Joel Tewksbury, Duke University Biomedical Engineering

Disciplines Involved

  • Pre-med
  • Biology
  • Biostatistics
  • All quantitative STEM

"I don't know if it's because I was on maternity leave for the first half or if they were just really good, but I felt like being involved took no effort on my part at all, and I got cool results without having to put much time in. It was a lot more fruitful than I had expected. Also it was fun to see the students learn scientific skills: they both told me they got an awful lot out of the program." Liz Cirulli, Assistant Research Professor in Molecular Genetics and Microbiology

Related People

Related Projects

A team of students collaborating with Duke School of Medicine's Root Causes Fresh Produce Program, community members, and physicians throughout the Duke Health network will help integrate data from food deliveries to Duke Health patients with patient health record data and other available data sources to create a dashboard that can analyze, predict, and manage the Root Causes' "Food as Medicine" program. Specific outcomes will contribute to improving the Program's quantitative evaluation of its health impact as well as efficiency and satisfaction for its patients. Students will be assisted with IRB approval and mentorship from faculty and community advisors.

Project Leads: Esko Brummel, Willis Wong

 

A team of students led by researchers at the Duke Marine Lab will explore the changing distribution of krill around the Antarctic Peninsula. Krill are a key prey species in this ecosystem, supporting a number of animals including whales, seals, and penguins, but they are dependent on winter sea ice and may be in trouble as climate change progresses. Using data from acoustic zooplankton surveys, students will create maps and other products to visualize the spatial distribution of krill over the past 20 summers, then create metrics that allow us to quantify the way that krill distribution around the Antarctic Peninsula is changing as the climate shifts and ice melts. These results will be key to our understanding of the impacts of climate change on this polar ecosystem.

 

Project Lead: Douglas Nowacek

Project Manager: Amanda Lohmann

 

A team of students will partner closely with the City of Durham's newly formed Community Safety Department.  The Community Safety Department's mission is to identify, implement, and evaluate new approaches to enhance public safety that may not involve a law enforcement response or the criminal justice system. The student team will (1) analyze and identify geographic and temporal patterns in 911 calls for service, (2) conceptualize and build an abstracted data pipeline and tools that would enrich currently available 911 data with other social, economic, and health-related data, (3) explore associations between areas of high call volume, indicators of mental health distress, and histories of dispossession; and (4) identify methods by which future researchers could examine connections between varied 911 incident responses (e.g. police response, unarmed response, joint police, and mental health response) and life trajectories (e.g. arrest, jail time, hospitalization, unemployment, etc.).

 

Project Lead: Greg Herschlag, Anise Van, City of Durham

Project Manager: Deekshita Saikia