LungMAP

Project Summary

Vivek Sriram (Computer Science and Math), Lina Yang (Biostatistics), and Pablo Ortiz (BME) spent ten weeks working in close collaboration with the Department of Biostatistics and Bioinformatics implementing an image analysis pipeline for immunofluorescence microscopy images of developing mouse lungs.

Themes and Categories
Year
2016

Project Results

Using the LungMAP image atlas (http://lungmap.net), the team developed an image segmentation pipeline to help researchers more effectively utilize open-access images of lungs in various developmental stages. The work of the Data+ team allows biologists and clinical researchers to quantify changes in lung structure during fetal development, and improve understanding of normal lung structure and function.

Download the Executive Summary (PDF)

Article on LungMAP project https://biostat.duke.edu/news/data-wraps

Faculty Sponsors

Project Manager

Participants

Disciplines Involved

  • Biostatistics
  • Biology
  • All quantitative STEM

Related People

Related Projects

Social and environmental contexts are increasingly recognized as factors that impact health outcomes of patients. This team will have the opportunity to collaborate directly with clinicians and medical data in a real-world setting. They will examine the association between social determinants with risk prediction for hospital admissions, and to assess whether social determinants bias that risk in a systematic way. Applied methods will include machine learning, risk prediction, and assessment of bias. This Data+ project is sponsored by the Forge, Duke's center for actionable data science.

Project Leads: Shelly Rusincovitch, Ricardo Henao, Azalea Kim

Project Manager: Austin Talbot

Aaron Chai (Computer Sciece, Math) and Victoria Worsham (Economics, Math) spent ten weeks building tools to understand characteristics of successful oil and gas licenses in the North Sea. The team used data-scraping, merging, and OCR method to create a dataset containing license information and work obligations, and they also produced ArcGIS visualizations of license and well locations. They had the chance to consult frequently with analytics professionals at ExxonMobil.

Click here to read the Executive Summary

 

Project Lead: Kyle Bradbury

Project Manager: Artem Streltsov

Yueru Li (Math) and Jiacheng Fan (Economics, Finance) spent ten weeks investigating abnormal behavior by companies bidding for oil and gas rights in the Gulf of Mexico. Working with data provided by the Bureau of Ocean Energy Management and ExxonMobil, the team used outlier detection methods to automate the flagging of abnormal behavior, and then used statistical methods to examine various factors that might predict such behavior. They had the chance to consult frequently with analytics professionals at ExxonMobil.

 

Click here to read the Executive Summary

 

Project Lead: Kyle Bradbury

Project Manager: Hyeongyul Roh