Latinxs and the Right

Project Summary

The visibility of hate groups such as the Alt-Right became mainstream into contemporary political culture during the Unite the Right Rally in Charlottesville, VA in 2017. This project aims to explore methods to quantify the presence of Latinxs within the Alt-Right, particularly in how they racialize themselves in a space that often spews hate towards Mexicans and other marginalized groups from Latin America. Using data from multiple sources (such as Twitter, Stormfront, and Breitbart), we developed a corpus of tweets, subthreads, and articles, and analyzed this data using basic natural language processing (NLP) techniques.

Project Lead: Cecilia Márquez

Project Manager: Susan Jacobs

 

Click here to view the team's project summary slides

 

Watch the team's final presentation (on Zoom) here:

Themes and Categories
Year
2020
Contact
Paul Bendich
Mathematics
bendich@math.duke.edu

Related Projects

A large and growing trove of patient, clinical, and organizational data is collected as a part of the “Help Desk” program at Durham’s Lincoln Community Health Center. Help Desk is a group of student volunteers who connect with patients over the phone and help them navigate to community resources (like food assistance programs, legal aid, or employment centers). Data-driven approaches to identifying service gaps, understanding the patient population, and uncovering unseen trends are important for improving patient health and advocating for the necessity of these resources. Disparities in food security, economic stability, education, neighborhood and physical environment, community and social context, and access to the healthcare system are crucial social determinants of health, which studies indicate account for nearly 70% of all health outcomes.

The Air Force’s F-15E Strike Eagle jets have parts that wear down and break, causing unscheduled maintenance events that take away valuable time in the air for critical missions and training. Our team, Limitless Data, is working with Seymour Johnson Air Force Base to mine manually entered maintenance data to visualize and predict aircraft failures. We created a prototype data visualization product that will enable maintainers on the flight line and help them identify and repair critical failures before they happen, keeping jets ready to fly, fight and win.

 

Faculty Lead: Dr. Emma Rasiel

Client Lead: Lt. Devon Burger

Project Manger:  Vignesh Kumaresan

This project aims to improve the computational efficiency of signal operations, e.g., sampling and multiplying signals. We design machine learning-based signal processing modules that use an adaptive sampling strategy and interpolation to generate a good approximation of the exact output. While ensuring a low error level, improvements in computational efficiency can be expected for digital signal processing systems using the implemented self-adjusting modules.

Project Leads: Yi Feng, Vahid Tarokh

 

Click here to view the project team's poster

 

Watch the team's final presentation (on Zoom) here: