Invisible Adaptations: From Hamlet to the Avengers

Project Summary

The students in this project worked on a pervasive question in literary, film, and copyright studies: how do we know when a new work of fiction borrows from an older one? Many times, works are appropriated, rather than straightforwardly adapted, which makes it difficult for human readers to trace. As we continue to remake and repurpose previous texts into new forms that combine hundreds of references to other works (such as Ready Player One), it becomes increasingly laborious to track all the intertextual elements of a single text. While some borrowings are easy to spot, as in the case of Marvel films that are straightforward adaptations of comic book storylines and aesthetics, others are more subtle, as when Disney reinterpreted Hamlet and African oral traditions to create The Lion King. Thousands of new stories are created each day, but how do we know if we are borrowing or appropriating a previous text? Are there works that have adapted previous ones that we have yet to identify?

 

The students worked with data from over 16.7 million books from Hathitrust, with critical analysis in scholarly articles accessible through JSTOR, and with the topic categories in Wikipedia. The group used Latent Dirichlet Allocation (LDA), a generative model that assumes that all documents are a mixture of topics, to represent key themes and topics as a distribution over words. The students developed a flexible and graduated heuristic for identifying a work as an adaptation; the more pre-selected categories a work fit under, the more likely it was to be marked as an adaptation by their model. Over the summer, the students came to appreciate that all digital humanistic methodologies are contestable and dependent on traditional critical work.

 

Click here to read the Executive Summary

Faculty Lead: Grant Glass

Themes and Categories
Year
2019
Contact
Paul Bendich
Mathematics
bendich@math.duke.edu

Related People

Related Projects

The Air Force’s F-15E Strike Eagle jets have parts that wear down and break, causing unscheduled maintenance events that take away valuable time in the air for critical missions and training. Our team, Limitless Data, is working with Seymour Johnson Air Force Base to mine manually entered maintenance data to visualize and predict aircraft failures. We created a prototype data visualization product that will enable maintainers on the flight line and help them identify and repair critical failures before they happen, keeping jets ready to fly, fight and win.

 

Faculty Lead: Dr. Emma Rasiel

Client Lead: Lt. Devon Burger

Project Manger:  Vignesh Kumaresan

This project aims to improve the computational efficiency of signal operations, e.g., sampling and multiplying signals. We design machine learning-based signal processing modules that use an adaptive sampling strategy and interpolation to generate a good approximation of the exact output. While ensuring a low error level, improvements in computational efficiency can be expected for digital signal processing systems using the implemented self-adjusting modules.

Project Leads: Yi Feng, Vahid Tarokh

 

Click here to view the project team's poster

 

Watch the team's final presentation (on Zoom) here:

 

Mapping History has focused on the categorizing, labelling, digitization, and 3D reconstruction of 16th & 17th century maps & atlases of London and Lisbon. Over the course of the summer, the Mapping History team has developed its own unique analytical dataset by painstakingly labelling every element contained within these maps, used python to digitize this dataset, and, now in the projects final stage, has begun the process of reconstructing these historical perspectives in a 3D game engine.

Project Lead: Philip Stern, Ed Triplett

Project Manager: Sam Horewood

 

View the team's final poster here

Watch the team's final presentation (on Zoom) below: