Invisible Adaptations: From Hamlet to the Avengers

Project Summary

The students in this project worked on a pervasive question in literary, film, and copyright studies: how do we know when a new work of fiction borrows from an older one? Many times, works are appropriated, rather than straightforwardly adapted, which makes it difficult for human readers to trace. As we continue to remake and repurpose previous texts into new forms that combine hundreds of references to other works (such as Ready Player One), it becomes increasingly laborious to track all the intertextual elements of a single text. While some borrowings are easy to spot, as in the case of Marvel films that are straightforward adaptations of comic book storylines and aesthetics, others are more subtle, as when Disney reinterpreted Hamlet and African oral traditions to create The Lion King. Thousands of new stories are created each day, but how do we know if we are borrowing or appropriating a previous text? Are there works that have adapted previous ones that we have yet to identify?

 

The students worked with data from over 16.7 million books from Hathitrust, with critical analysis in scholarly articles accessible through JSTOR, and with the topic categories in Wikipedia. The group used Latent Dirichlet Allocation (LDA), a generative model that assumes that all documents are a mixture of topics, to represent key themes and topics as a distribution over words. The students developed a flexible and graduated heuristic for identifying a work as an adaptation; the more pre-selected categories a work fit under, the more likely it was to be marked as an adaptation by their model. Over the summer, the students came to appreciate that all digital humanistic methodologies are contestable and dependent on traditional critical work.

 

Click here to read the Executive Summary

Faculty Lead: Grant Glass

Themes and Categories
Year
2019
Contact
Paul Bendich
Mathematics
bendich@math.duke.edu

Related People

Related Projects

A team of students that worked together for a semester in the Mission Driven Startups class will obtain and analyze data to create a predictive maintenance model for F15-E Fighter Jets from Seymour Johnson Air Base. Using data provided by the Base, the Data+ team will evaluate the relationship between unscheduled maintenance and external factors such as weather, sortie hours between repairs, and failure frequency of aircraft components. These findings will then feed into a predictive maintenance model to enhance the Air Force Crew’s ability to anticipate maintenance needs, helping to minimize unscheduled aircraft downtime. 

 

Faculty Lead: Dr. Emma Rasiel

Client Lead: Lt. Devon Burger

Project Manger:  Vignesh Kumaresan

A team of students, led by Electrical and Computer Engineering professor Vahid Tarokh, will develop methods to improve the efficiency of information processing with adaptive decisions according to the structure of new incoming data. Students will have the opportunity to explore data-driven adaptive strategies based on neural networks and statistical learning models, investigate trade-offs between error threshold and computational complexity for various fundamental operations, and implement software prototypes. The outcome of this project can potentially speed up many systems and networks involving data sensing, acquisition, and computation.

Project Leads: Yi Feng, Vahid Tarokh

A team of students will explore new ways of reading pre-modern maps and perspectival views through image tagging, annotation and 3D modeling. Each student will build a typology of icons found in these early maps (for example, houses, churches, roads, rivers, etc.). By extracting, modeling, and cataloging these features, the team will create a library of 2D and 3D objects that will be used to (a) identify patterns in how space and power are represented across these maps, and (b) to create a model for “experiencing” these maps in 3D, using the Unity game engine platform. This is a combined Data+ / Bass Connections project that will instruct students in qualitative and quantitative mapping techniques, basic 3D modeling and the history of cartography.

Project Lead: Philip Stern, Ed Triplett

Project Manager: Sam Horewood