Invisible Adaptations: From Hamlet to the Avengers

Project Summary

The students in this project worked on a pervasive question in literary, film, and copyright studies: how do we know when a new work of fiction borrows from an older one? Many times, works are appropriated, rather than straightforwardly adapted, which makes it difficult for human readers to trace. As we continue to remake and repurpose previous texts into new forms that combine hundreds of references to other works (such as Ready Player One), it becomes increasingly laborious to track all the intertextual elements of a single text. While some borrowings are easy to spot, as in the case of Marvel films that are straightforward adaptations of comic book storylines and aesthetics, others are more subtle, as when Disney reinterpreted Hamlet and African oral traditions to create The Lion King. Thousands of new stories are created each day, but how do we know if we are borrowing or appropriating a previous text? Are there works that have adapted previous ones that we have yet to identify?

 

The students worked with data from over 16.7 million books from Hathitrust, with critical analysis in scholarly articles accessible through JSTOR, and with the topic categories in Wikipedia. The group used Latent Dirichlet Allocation (LDA), a generative model that assumes that all documents are a mixture of topics, to represent key themes and topics as a distribution over words. The students developed a flexible and graduated heuristic for identifying a work as an adaptation; the more pre-selected categories a work fit under, the more likely it was to be marked as an adaptation by their model. Over the summer, the students came to appreciate that all digital humanistic methodologies are contestable and dependent on traditional critical work.

 

Click here to read the Executive Summary

Faculty Lead: Grant Glass

Themes and Categories
Year
2019
Contact
Paul Bendich
Mathematics
bendich@math.duke.edu

Related People

Related Projects

This two-week teaching module in an introductory-level undergraduate course invites students to explore the power of Twitter in shaping public discourse. The project supplements the close-reading methods that are central to the humanities with large-scale social media analysis. This exercise challenges students to consider how applying visualization techniques to a dataset too vast for manual apprehension might enable them to identify for granular inspection smaller subsets of data and individual tweets—as well as to determine what factors do not lend themselves to close-reading at all. Employing an original dataset of almost one million tweets focused on the contested 2018 Florida midterm elections, students develop skills in using visualization software, generating research questions, and creating novel visualizations to answer those questions. They then evaluate and compare the affordances of large-scale data analytics with investigation of individual tweets, and draw on their findings to debate the role of social media in shaping public conversations surrounding major national events. This project was developed as a collaboration among the English Department (Emma Davenport and Astrid Giugni), Math Department (Hubert Bray), Duke University Library (Eric Monson), and Trinity Technology Services (Brian Norberg).

Understanding how to generate, analyze, and work with datasets in the humanities is often a difficult task without learning how to code or program. In humanities centered courses, we often privilege close reading or qualitative analysis over other methods of knowing, but by learning some new quantitative techniques we better prepare the students to tackle new forms of reading. This class will work with the data from the HathiTrust to develop ideas for thinking about how large groups and different discourse communities thought of queens of antiquity like Cleopatra and Dido.

Please refer to https://sites.duke.edu/queensofantiquity/ for more information.

Social and environmental contexts are increasingly recognized as factors that impact health outcomes of patients. This team will have the opportunity to collaborate directly with clinicians and medical data in a real-world setting. They will examine the association between social determinants with risk prediction for hospital admissions, and to assess whether social determinants bias that risk in a systematic way. Applied methods will include machine learning, risk prediction, and assessment of bias. This Data+ project is sponsored by the Forge, Duke's center for actionable data science.

Project Leads: Shelly Rusincovitch, Ricardo Henao, Azalea Kim

Project Manager: Austin Talbot