Human Rights in the Postwar World

Project Summary

The aim of this project was to explore how U.S. mass media—particularly newspapers—enlists text and imagery to portray human rights, genocide, and crimes against humanity from World War II until the present. From the Holocaust to Cambodia, from Rwanda to Myanmar, such representation has political consequences. Coined by Raphael Lemkin, a Polish lawyer who fled Hitler’s antisemitism, the term “genocide” was first introduced to the American public in a Washington Post op-ed in 1944. Since its legal codification by the United Nations Convention for the Prevention of Genocide in 1948, the term has circulated, been debated, used to describes events that pre-date it (such as the displacement and genocide of Native People in the Americas), and been shaped by numerous forces—especially the words and images published in newspapers. Alongside the definition of “genocide,” other key concepts, specifically “crimes against humanity,” have attempted to label, and thus name the story, of targeted mass violence. Conversely, the concept of “human rights,” enshrined in the 1948 UN Declaration, seeks to name a presence of rights instead of their absence.

 

During the summer, the team focused their work on evaluating the language used in Western media to represent instances of genocide and how such language varied based on the location and time period of the conflict. In particular, the team’s efforts centered on Rwanda and Bosnia as important case studies, affording them the chance to compare nearly simultaneous reporting on two well-known genocides. The language used by reporters in these two cases showed distinct polarizations of terminology (for instance, while “slaughter” was much more common than “murder” in discussions of the Rwanda genocide, the inverse was true for Bosnia).

 

Click here to read the Executive Summary

 

Faculty Leads: Nora Nunn, Astrid Giugni

Themes and Categories
Year
2019
Contact
Paul Bendich
Mathematics
bendich@math.duke.edu

Related People

Related Projects

A large and growing trove of patient, clinical, and organizational data is collected as a part of the “Help Desk” program at Durham’s Lincoln Community Health Center. Help Desk is a group of student volunteers who connect with patients over the phone and help them navigate to community resources (like food assistance programs, legal aid, or employment centers). Data-driven approaches to identifying service gaps, understanding the patient population, and uncovering unseen trends are important for improving patient health and advocating for the necessity of these resources. Disparities in food security, economic stability, education, neighborhood and physical environment, community and social context, and access to the healthcare system are crucial social determinants of health, which studies indicate account for nearly 70% of all health outcomes.

A team of students that worked together for a semester in the Mission Driven Startups class will obtain and analyze data to create a predictive maintenance model for F15-E Fighter Jets from Seymour Johnson Air Base. Using data provided by the Base, the Data+ team will evaluate the relationship between unscheduled maintenance and external factors such as weather, sortie hours between repairs, and failure frequency of aircraft components. These findings will then feed into a predictive maintenance model to enhance the Air Force Crew’s ability to anticipate maintenance needs, helping to minimize unscheduled aircraft downtime. 

 

Faculty Lead: Dr. Emma Rasiel

Client Lead: Lt. Devon Burger

Project Manger:  Vignesh Kumaresan

A team of students, led by Electrical and Computer Engineering professor Vahid Tarokh, will develop methods to improve the efficiency of information processing with adaptive decisions according to the structure of new incoming data. Students will have the opportunity to explore data-driven adaptive strategies based on neural networks and statistical learning models, investigate trade-offs between error threshold and computational complexity for various fundamental operations, and implement software prototypes. The outcome of this project can potentially speed up many systems and networks involving data sensing, acquisition, and computation.

Project Leads: Yi Feng, Vahid Tarokh