Fruit Fly Morphogenesis

Project Summary

BME major Neel Prabhu, along with CompSci and ECE majors Virginia Cheng and Cheng Lu, spent ten weeks studying how cells from embryos of the common fruit fly move and change in shape during development. They worked with Cell-Sheet-Tracker (CST), an algorithm develped by former Data+ student Roger Zou and faculty lead Carlo Tomasi. This algorithm uses computer vision to model and track a dynamic network of cells using a deformable graph.

Themes and Categories
Year
2016

Project Results

The team produced a graphical user interface, called GraphGUI (https://github.com/neelprabhu/FlyGUI), that enables rapid data exchange with the CST and allows subject matter experts to edit in real time, increasing the accuracy of the tracking.

Download the Executive Summary (PDF)

Faculty Sponsors

Project Managers

Participants

  • Neel Prabhu, Duke University Biomedical Engineering
  • Cheng Lu, Duke University Computer Science & Electrical and Computer Engineering
  • Virginia Cheng, Duke University Computer Science & Electrical and Computer Engineering

Related People

Related Projects

Social and environmental contexts are increasingly recognized as factors that impact health outcomes of patients. This team will have the opportunity to collaborate directly with clinicians and medical data in a real-world setting. They will examine the association between social determinants with risk prediction for hospital admissions, and to assess whether social determinants bias that risk in a systematic way. Applied methods will include machine learning, risk prediction, and assessment of bias. This Data+ project is sponsored by the Forge, Duke's center for actionable data science.

Project Leads: Shelly Rusincovitch, Ricardo Henao, Azalea Kim

Project Manager: Austin Talbot

Producing oil and gas in the North Sea, off the coast of the United Kingdom, requires a lease to extract resources from beneath the ocean floor and companies bid for those rights. This team will consult with professionals at ExxonMobil to understand why these leases are acquired and who benefits. This requires historical data on bid history to investigate what leads to an increase in the number of (a) leases acquired and (b) companies participating in auctions. The goal of this team is to create a well-structured dataset based on company bid history from the U.K. Oil and Gas Authority; data which will come from many different file structures and formats (tabular, pdf, etc.). The team will curate these data to create a single, tabular database of U.K. bid history and work programs.

Project Lead: Kyle Bradbury

Project Manager: Artem Streltsov

Producing oil and gas in the Gulf of Mexico requires rights to extract these resources from beneath the ocean floor and companies bid into the market for those rights. The top bids are sometimes significantly larger than the next highest bids, but it’s not always clear why this differential exists and some companies seemingly overbid by large margins. This team will consult with professionals at ExxonMobil to curate and analyze historical bid data from the Bureau of Ocean Energy Management that contains information on company bid history, infrastructure, wells, and seismic survey data as well as data from the companies themselves and geopolitical events. The stretch goal of the team will be to see if they can uncover the rationale behind historic bidding patterns. What do the highest bidders know that other bidders do not (if anything)? What characteristics might incentivize overbidding to minimize the risk of losing the right to produce (i.e. ambiguity aversion)?

Project Lead: Kyle Bradbury

Project Manager: Hyeongyul Roh