EMR and Clinical Trials

Project Summary

Biomedical Engineering major Chi Kim Trinh, and Biostatistics MS student Can Cui spent ten weeks constructing a computational and statistical framework to evaluate the effects of health coaching on Type II Diabetes patients’ quality metrics, including Hemoglobin A1c, blood pressure, eye exam consistency, tobacco use, and prescription adherence to statins, aspirin, and angiotensin converter enzyme (ACE)/ angiotensin receptor blocker (ARB).

Themes and Categories
Year
2016

Project Results

Using Duke Electronic Medical Record data from diabetic patients, the team built an analytical pipeline for a prospective health coaching clinical trial to examine the effect on patients’ health and future medical costs. This framework will be extrapolated to data from the Triad Health Network and will be an analytical path for Accountable Care Organizations to evaluate ways to improve quality of care and lower costs while taking part in the Medicare Shared Savings Program.

Download the Executive Summary (PDF)

Client

Faculty Sponsor

  • Joe Lucas, Associate Director for Health System Operations, iiD

Project Manager

Participants

Related People

Related Projects

Brooke Erikson (Economics/Computer Science), Alejandro Ortega (Math), and Jade Wu (Computer Science) spent ten weeks developing open-source tools for automatic document categorization, PDF table extraction, and data identification. Their motivating application was provided by Power for All’s Platform for Energy Access Knowledge, and they frequently collaborated with professionals from that organization.

Click here to read the Executive Summary

 

Jake Epstein (Statistics/Economics), Emre Kiziltug (Economics), and Alexander Rubin (Math/Computer Science) spent ten weeks investigating the existence of relative value opportunities in global corporate bond markets. They worked closely with a dataset provided by a leading asset management firm.

Click here for the Executive Summary

Maksym Kosachevskyy (Economics) and Jaehyun Yoo (Statistics/Economics) spent ten weeks understanding temporal patterns in the used construction machinery market and investigating the relationship between these patterns and macroeconomic trends.

They worked closely with a large dataset provided by MachineryTrader.com, and discussed their findings with analytics professionals from a leading asset management firm.

Click here to read the Executive Summary