EMR and Clinical Trials

Project Summary

Biomedical Engineering major Chi Kim Trinh, and Biostatistics MS student Can Cui spent ten weeks constructing a computational and statistical framework to evaluate the effects of health coaching on Type II Diabetes patients’ quality metrics, including Hemoglobin A1c, blood pressure, eye exam consistency, tobacco use, and prescription adherence to statins, aspirin, and angiotensin converter enzyme (ACE)/ angiotensin receptor blocker (ARB).

Themes and Categories
Year
2016

Project Results

Using Duke Electronic Medical Record data from diabetic patients, the team built an analytical pipeline for a prospective health coaching clinical trial to examine the effect on patients’ health and future medical costs. This framework will be extrapolated to data from the Triad Health Network and will be an analytical path for Accountable Care Organizations to evaluate ways to improve quality of care and lower costs while taking part in the Medicare Shared Savings Program.

Download the Executive Summary (PDF)

Client

Faculty Sponsor

  • Joe Lucas, Associate Director for Health System Operations, iiD

Project Manager

Participants

Related People

Related Projects

Social and environmental contexts are increasingly recognized as factors that impact health outcomes of patients. This team will have the opportunity to collaborate directly with clinicians and medical data in a real-world setting. They will examine the association between social determinants with risk prediction for hospital admissions, and to assess whether social determinants bias that risk in a systematic way. Applied methods will include machine learning, risk prediction, and assessment of bias. This Data+ project is sponsored by the Forge, Duke's center for actionable data science.

Project Leads: Shelly Rusincovitch, Ricardo Henao, Azalea Kim

Project Manager: Austin Talbot

Aaron Chai (Computer Sciece, Math) and Victoria Worsham (Economics, Math) spent ten weeks building tools to understand characteristics of successful oil and gas licenses in the North Sea. The team used data-scraping, merging, and OCR method to create a dataset containing license information and work obligations, and they also produced ArcGIS visualizations of license and well locations. They had the chance to consult frequently with analytics professionals at ExxonMobil.

Click here to read the Executive Summary

 

Project Lead: Kyle Bradbury

Project Manager: Artem Streltsov

Yueru Li (Math) and Jiacheng Fan (Economics, Finance) spent ten weeks investigating abnormal behavior by companies bidding for oil and gas rights in the Gulf of Mexico. Working with data provided by the Bureau of Ocean Energy Management and ExxonMobil, the team used outlier detection methods to automate the flagging of abnormal behavior, and then used statistical methods to examine various factors that might predict such behavior. They had the chance to consult frequently with analytics professionals at ExxonMobil.

 

Click here to read the Executive Summary

 

Project Lead: Kyle Bradbury

Project Manager: Hyeongyul Roh