Electricity Access in Developing Countries from Aerial Imagery

Project Summary

Boning Li (Masters Electrical and Computer Engineering), Ben Brigman (Electrical and Computer Engineering), Gouttham Chandrasekar (Electrical and Computer Engineering), Shamikh Hossain (Computer Science, Economics), and Trishul Nagenalli (Electrical and Computer Engineering, Computer Science) spent ten weeks creating datasets of electricity access indicators that can be used to train a classifier to detect electrified villages. This coming academic year, a Bass Connections Team will use these datasets to automatically find power plants and map electricity infrastructure.

Themes and Categories
Year
2017
Contact
Ashlee Valente
Center for Applied Genomics and Precision Medicine
ashlee.valente@duke.edu

Project Results: The team gathered electrification ground-truth data for over 36,000 villages in the Indian state of Bihar, and also collected measurements relevant to electricity consumption for those villages including lights at night data and irrigation metrics. They also created an Amazon MTurk tool that crowdsourced the annotation of key electricity indicators (such as power plants and transmission lines) in imagery data.

Partially sponsored by Bass Connections and the Duke University Energy Initiative

Click here for the Executive Summary

Faculty Leads:

Kyle Bradbury

Leslie Collins

Timothy Johnson

Marc Jeuland

Guillermo Sapiro

Project Manager: Boning Li

"The Data+ team created two new datasets that we'll immediately deploy as a part of our core research efforts and will serve as the basis for an upcoming Bass Connections in Energy project. The outputs will be used towards two new research projects on energy infrastructure and access in developing countries, and will serve as the ground truth data for developing machine learning techniques for identifying energy infrastructure and access. The students were fantastic - hardworking, passionate about their work, and all-around wonderful people to work with." — Kyle Bradbury, Lecturing Fellow and Managing Director, Duke Energy Data Analytics Lab

 

Related People

Related Projects

A team of students, led by University Archivist Valerie Gillispie and Professor Don Taylor, will take a closer look at how the student body at Duke has transformed into a coeducational student body from around the world enrolled in ten different schools. Students will seek to transform digital and historical data into a dynamic visual display which allows viewers to examine changes in the student body over time in terms of three dimensions: geographic origin, gender, and school. The students will use born-digital data along with historical, paper-based data to assemble a data corpus. The goal is to demonstrate trends and changes over time in terms of where Duke students have come from, identifying statistically significant shifts and patterns that warrant further study.

Project Leads: Don Taylor, Valerie Gillispie

A team of students led by researchers in the Energy Initiative and the Energy Access Project will explore historical data on the U.S. Electric Farm Equipment (EFE) demonstration show that ran between 1939 and 1941, which aimed to increase usage of electricity in rural areas. Students will compile data collected by the Rural Electrification Agency into a machine-readable form, and then use that data to explore and visualize the EFE’s impact. If time allows, they will then compare data from the EFE and a related, smaller-scale project from 1923 (“Red Wing Project”) to current data on appliance promotion programs in villages in East Africa that have recently gained access to electricity. The outcomes of this analysis would offer evidence on the successes and limitations of these types of programs, and the relevance of the historical U.S. case to countries that are currently facing similar challenges.

Project Leads: Victoria Plutshack, Jonathon Free, Robert Fetter

A team of students led by the Nunn lab and its collaborators will investigate the ecological and behavioral factors that determine parasitism in different species of primates. Based on publicly available data and evolutionary trees, students will investigate parasitism by developing a network of primate-parasite relationships. This network will then be used to infer the ecological and behavioral characteristics that best predict parasitism. The findings are relevant to identifying emerging infectious diseases in humans, and also for conservation efforts globally.

Project Leads: Jim Moody, Charles Nunn

Project Manager: Marie Claire Chelini