Electricity Access in Developing Countries from Aerial Imagery

Project Summary

Boning Li (Masters Electrical and Computer Engineering), Ben Brigman (Electrical and Computer Engineering), Gouttham Chandrasekar (Electrical and Computer Engineering), Shamikh Hossain (Computer Science, Economics), and Trishul Nagenalli (Electrical and Computer Engineering, Computer Science) spent ten weeks creating datasets of electricity access indicators that can be used to train a classifier to detect electrified villages. This coming academic year, a Bass Connections Team will use these datasets to automatically find power plants and map electricity infrastructure.

Themes and Categories
Year
2017
Contact
Ashlee Valente
Center for Applied Genomics and Precision Medicine
ashlee.valente@duke.edu

Project Results: The team gathered electrification ground-truth data for over 36,000 villages in the Indian state of Bihar, and also collected measurements relevant to electricity consumption for those villages including lights at night data and irrigation metrics. They also created an Amazon MTurk tool that crowdsourced the annotation of key electricity indicators (such as power plants and transmission lines) in imagery data.

Partially sponsored by Bass Connections and the Duke University Energy Initiative

Click here for the Executive Summary

Faculty Leads:

Kyle Bradbury

Leslie Collins

Timothy Johnson

Marc Jeuland

Guillermo Sapiro

Project Manager: Boning Li

"The Data+ team created two new datasets that we'll immediately deploy as a part of our core research efforts and will serve as the basis for an upcoming Bass Connections in Energy project. The outputs will be used towards two new research projects on energy infrastructure and access in developing countries, and will serve as the ground truth data for developing machine learning techniques for identifying energy infrastructure and access. The students were fantastic - hardworking, passionate about their work, and all-around wonderful people to work with." — Kyle Bradbury, Lecturing Fellow and Managing Director, Duke Energy Data Analytics Lab

 

Related People

Related Projects

A team of students that worked together for a semester in the Mission Driven Startups class will obtain and analyze data to create a predictive maintenance model for F15-E Fighter Jets from Seymour Johnson Air Base. Using data provided by the Base, the Data+ team will evaluate the relationship between unscheduled maintenance and external factors such as weather, sortie hours between repairs, and failure frequency of aircraft components. These findings will then feed into a predictive maintenance model to enhance the Air Force Crew’s ability to anticipate maintenance needs, helping to minimize unscheduled aircraft downtime. 

 

Faculty Lead: Dr. Emma Rasiel

Client Lead: Lt. Devon Burger

Project Manger:  Vignesh Kumaresan

A team of students, led by Electrical and Computer Engineering professor Vahid Tarokh, will develop methods to improve the efficiency of information processing with adaptive decisions according to the structure of new incoming data. Students will have the opportunity to explore data-driven adaptive strategies based on neural networks and statistical learning models, investigate trade-offs between error threshold and computational complexity for various fundamental operations, and implement software prototypes. The outcome of this project can potentially speed up many systems and networks involving data sensing, acquisition, and computation.

Project Leads: Yi Feng, Vahid Tarokh

A team of students will explore new ways of reading pre-modern maps and perspectival views through image tagging, annotation and 3D modeling. Each student will build a typology of icons found in these early maps (for example, houses, churches, roads, rivers, etc.). By extracting, modeling, and cataloging these features, the team will create a library of 2D and 3D objects that will be used to (a) identify patterns in how space and power are represented across these maps, and (b) to create a model for “experiencing” these maps in 3D, using the Unity game engine platform. This is a combined Data+ / Bass Connections project that will instruct students in qualitative and quantitative mapping techniques, basic 3D modeling and the history of cartography.

Project Lead: Philip Stern, Ed Triplett

Project Manager: Sam Horewood