Electricity Access in Developing Countries from Aerial Imagery

Project Summary

Boning Li (Masters Electrical and Computer Engineering), Ben Brigman (Electrical and Computer Engineering), Gouttham Chandrasekar (Electrical and Computer Engineering), Shamikh Hossain (Computer Science, Economics), and Trishul Nagenalli (Electrical and Computer Engineering, Computer Science) spent ten weeks creating datasets of electricity access indicators that can be used to train a classifier to detect electrified villages. This coming academic year, a Bass Connections Team will use these datasets to automatically find power plants and map electricity infrastructure.

Themes and Categories
Year
2017
Contact
Ashlee Valente
Center for Applied Genomics and Precision Medicine
ashlee.valente@duke.edu

Project Results: The team gathered electrification ground-truth data for over 36,000 villages in the Indian state of Bihar, and also collected measurements relevant to electricity consumption for those villages including lights at night data and irrigation metrics. They also created an Amazon MTurk tool that crowdsourced the annotation of key electricity indicators (such as power plants and transmission lines) in imagery data.

Partially sponsored by Bass Connections and the Duke University Energy Initiative

Click here for the Executive Summary

Faculty Leads:

Kyle Bradbury

Leslie Collins

Timothy Johnson

Marc Jeuland

Guillermo Sapiro

Project Manager: Boning Li

"The Data+ team created two new datasets that we'll immediately deploy as a part of our core research efforts and will serve as the basis for an upcoming Bass Connections in Energy project. The outputs will be used towards two new research projects on energy infrastructure and access in developing countries, and will serve as the ground truth data for developing machine learning techniques for identifying energy infrastructure and access. The students were fantastic - hardworking, passionate about their work, and all-around wonderful people to work with." — Kyle Bradbury, Lecturing Fellow and Managing Director, Duke Energy Data Analytics Lab

 

Related People

Related Projects

The Air Force’s F-15E Strike Eagle jets have parts that wear down and break, causing unscheduled maintenance events that take away valuable time in the air for critical missions and training. Our team, Limitless Data, is working with Seymour Johnson Air Force Base to mine manually entered maintenance data to visualize and predict aircraft failures. We created a prototype data visualization product that will enable maintainers on the flight line and help them identify and repair critical failures before they happen, keeping jets ready to fly, fight and win.

 

Faculty Lead: Dr. Emma Rasiel

Client Lead: Lt. Devon Burger

Project Manger:  Vignesh Kumaresan

This project aims to improve the computational efficiency of signal operations, e.g., sampling and multiplying signals. We design machine learning-based signal processing modules that use an adaptive sampling strategy and interpolation to generate a good approximation of the exact output. While ensuring a low error level, improvements in computational efficiency can be expected for digital signal processing systems using the implemented self-adjusting modules.

Project Leads: Yi Feng, Vahid Tarokh

 

Click here to view the project team's poster

 

Watch the team's final presentation (on Zoom) here:

 

Mapping History has focused on the categorizing, labelling, digitization, and 3D reconstruction of 16th & 17th century maps & atlases of London and Lisbon. Over the course of the summer, the Mapping History team has developed its own unique analytical dataset by painstakingly labelling every element contained within these maps, used python to digitize this dataset, and, now in the projects final stage, has begun the process of reconstructing these historical perspectives in a 3D game engine.

Project Lead: Philip Stern, Ed Triplett

Project Manager: Sam Horewood

 

View the team's final poster here

Watch the team's final presentation (on Zoom) below: