Data Science for Community Safety in Durham

Project Summary

A team of students will partner closely with the City of Durham's newly formed Community Safety Department.  The Community Safety Department's mission is to identify, implement, and evaluate new approaches to enhance public safety that may not involve a law enforcement response or the criminal justice system. The student team will (1) analyze and identify geographic and temporal patterns in 911 calls for service, (2) conceptualize and build an abstracted data pipeline and tools that would enrich currently available 911 data with other social, economic, and health-related data, (3) explore associations between areas of high call volume, indicators of mental health distress, and histories of dispossession; and (4) identify methods by which future researchers could examine connections between varied 911 incident responses (e.g. police response, unarmed response, joint police, and mental health response) and life trajectories (e.g. arrest, jail time, hospitalization, unemployment, etc.).

 

Project Lead: Greg Herschlag, Anise Van, City of Durham

 

 

Themes and Categories
Year
2022
Contact
Greg Herschlag
Mathematics
gregory.herschlag@duke.edu

Related Projects

A team of students collaborating with Duke School of Medicine's Root Causes Fresh Produce Program, community members, and physicians throughout the Duke Health network will help integrate data from food deliveries to Duke Health patients with patient health record data and other available data sources to create a dashboard that can analyze, predict, and manage the Root Causes' "Food as Medicine" program. Specific outcomes will contribute to improving the Program's quantitative evaluation of its health impact as well as efficiency and satisfaction for its patients. Students will be assisted with IRB approval and mentorship from faculty and community advisors.

Project Leads: Esko Brummel, Willis Wong

A team of students led by researchers at the Duke Marine Lab will explore the changing distribution of krill around the Antarctic Peninsula. Krill are a key prey species in this ecosystem, supporting a number of animals including whales, seals, and penguins, but they are dependent on winter sea ice and may be in trouble as climate change progresses. Using data from acoustic zooplankton surveys, students will create maps and other products to visualize the spatial distribution of krill over the past 20 summers, then create metrics that allow us to quantify the way that krill distribution around the Antarctic Peninsula is changing as the climate shifts and ice melts. These results will be key to our understanding of the impacts of climate change on this polar ecosystem.

 

Project Lead: Douglas Nowacek

Project Manager: Amanda Lohmann

 

Today we design communication networks using mathematical models that describe components of the system that affect end-to-end performance. As wireless links become more highly variable, and system components become harder to model, this approach is losing ground. A team of students led by Dr. Robert Calderbank, Dr. Christ Richmond, Dr. Lingjia Liu, Dr. Jeff Reed, and Carl Dietrich will develop machine learning (ML) algorithms that take advantage of special features of new waveforms proposed for 6G wireless communication. The team will be highly interdisciplinary, and will include students from Virginia Tech familiar with wireless communication, as well as students interested in machine learning. Students will design experiments, collect data, and analyze over the air performance, some working onsite using Virginia Tech’s CORNET testbed (https://cornet.wireless.vt.edu/), some virtually using CORENT-based remote lab experiments. The team will present their findings to clients at the Air Force Research Lab in Rome, NY.

Project Leads: Robert Calderbank, Christ Richmond, Lingjia Liu, Jeff Reed, and Carl Dietrich