Data-driven Parking

Project Summary

ECE majors Mitchell Parekh and Yehan (Morton) Mo, along with IIT student Nikhil Tank, spent ten weeks understanding parking behavior at Duke. They worked closely with the Parking and Transportation Office, as well as with Vice President for Administration Kyle Cavanaugh.

Project Results

After extensive discussions with the data provider, the team was able to provide key insight into how to compute hourly occupation counts for all gated lots on campus, and also build a visualization tool (in Tableau) that elegantly displays these occupancy counts. In addition, they constructed a model that combines these occupancy counts with Google Maps data and computes the optimal "redirection lot'' for a driver to be directed to, in the event of over-capacity at the driver's normal lot. There are now discussions about integrating these visualization and redirection tools into the Parking and Transportation system.

Download the Executive Summary (PDF)

“The work of the Data+ team have exceeded my expectations. The intellectual curiosity and technical skill of the team have been outstanding. We are truly looking forward to operationalize the team’s work.” - Kyle Cavanaugh, Vice President for Administration of Duke

“I think that data+ was an immensely beneficial program for me. I was very happy to partake in it and can't wait to see it develop in the next few years. [I gained] an understanding for what big data really is, along with the amount of work that is required to extract usable information from it.”  - Mitchell Parekh, Electrical and Computer Engineering, Class of 2019

Client

Project Manager

Participants

  • Mitchell Parekh,  Duke University Electrical and Computer Engineering
  • Yehan (Morton) Mo, Duke University Electrical and Computer Engineering
  • Nikhil Tank, Indian Institute of Technology Electrical and Computer Engineering

Disciplines Involved

  • Economics
  • All quantitative STEM

Related People

Related Projects

United Nations Sustainable Development Goal 7 calls for universal access to affordable, reliable, sustainable, and modern energy. Researchers and practitioners around the world have responded to this call by producing a wealth of energy access data. While many data gaps still exist, are we capturing the fullest potential from the information and research we do have, and what it tells us about how to accelerate energy access? Power for All’s Platform for Energy Access Knowledge (PEAK) is an interactive knowledge platform designed to automatically curate, organize, and streamline large, growing bodies of data into digestible, sharable, and useable knowledge through automated data capture, indexing, and visualization. A team of students led by Rebekah Shirley will consult with Power for All to creatively visualize PEAK’s library, and to explore machine learning and natural language processing tools that can enable auto-extraction and visualization of data for more effective science communication.

Are there relative value opportunities in the global corporate bond markets?  
A team of students will work with Professor Emma Rasiel to understand whether an analysis of credit spreads on bonds issued by international firms in multiple countries over time can shed light on potential arbitrage opportunities. The team will have frequent opportunities to interact with analytics professionals at a leading financial advisory and asset management firm.

 

A team of students will consult with a leading financial advisory and asset management firm that is seeking to understand how big data can shed light on the secondary market for construction machinery. Students will explore a combination of publicly-available datasets that describe the used-machinery market and its potential implications as an indicator for the business cycle. There will be frequent interactions with analytical professionals from the firm.