Building a Duke SLED (Duke Surgery Longitudinal Education Database)

Project Summary

A team of students led by Dr. Shanna Sprinkle of Duke Surgery will combine success metrics of Duke Surgery residents from a set of databases and create a user interface for residency program directors and possibly residents themselves to view and better understand residency program performance.

Themes and Categories
Year
2017
Contact
Ashlee Valente
Center for Applied Genomics and Precision Medicine
ashlee.valente@duke.edu

Using MySQL or Oracle, students will access and aggregate an incredible amount of information about Duke general surgery residents including operative case logs, exam scores, and research publications. Students will then create a dashboard for this data, including visualizations and basic statistical summaries. This project will help Duke Surgery facilitate future education research, generate better resident reports, provide an insightful user interface, and eventually have the potential to build models to predict resident performance and incorporate an alert system for more timely identification and intervention of individual and program level issues. Partially funded by the Duke University Surgery Department.

Faculty Lead: Dr. Shanna Sprinkle

Project Manager: Katherine King, Visiting Assistant Professor in the Department of Community and Family Medicine

Student Team: Surabhi Beriwal, Vivian Qi

Dr. Katherine King, Dr. Shanna Sprinkle, Surabhi Beriwal and Vivian Qi at the 2017 Data+ Poster Session

 

Related People

Related Projects

Social and environmental contexts are increasingly recognized as factors that impact health outcomes of patients. This team will have the opportunity to collaborate directly with clinicians and medical data in a real-world setting. They will examine the association between social determinants with risk prediction for hospital admissions, and to assess whether social determinants bias that risk in a systematic way. Applied methods will include machine learning, risk prediction, and assessment of bias. This Data+ project is sponsored by the Forge, Duke's center for actionable data science.

Project Leads: Shelly Rusincovitch, Ricardo Henao, Azalea Kim

Project Manager: Austin Talbot

Producing oil and gas in the North Sea, off the coast of the United Kingdom, requires a lease to extract resources from beneath the ocean floor and companies bid for those rights. This team will consult with professionals at ExxonMobil to understand why these leases are acquired and who benefits. This requires historical data on bid history to investigate what leads to an increase in the number of (a) leases acquired and (b) companies participating in auctions. The goal of this team is to create a well-structured dataset based on company bid history from the U.K. Oil and Gas Authority; data which will come from many different file structures and formats (tabular, pdf, etc.). The team will curate these data to create a single, tabular database of U.K. bid history and work programs.

Project Lead: Kyle Bradbury

Project Manager: Artem Streltsov

Producing oil and gas in the Gulf of Mexico requires rights to extract these resources from beneath the ocean floor and companies bid into the market for those rights. The top bids are sometimes significantly larger than the next highest bids, but it’s not always clear why this differential exists and some companies seemingly overbid by large margins. This team will consult with professionals at ExxonMobil to curate and analyze historical bid data from the Bureau of Ocean Energy Management that contains information on company bid history, infrastructure, wells, and seismic survey data as well as data from the companies themselves and geopolitical events. The stretch goal of the team will be to see if they can uncover the rationale behind historic bidding patterns. What do the highest bidders know that other bidders do not (if anything)? What characteristics might incentivize overbidding to minimize the risk of losing the right to produce (i.e. ambiguity aversion)?

Project Lead: Kyle Bradbury

Project Manager: Hyeongyul Roh