Black Queen Hypothesis

Project Summary

Xinyu (Cindy) Li (Biology and Chemistry) and Emilie Song (Biology) spent ten weeks exploring the Black Queen Hypothesis, which predicts that co-operation in animal societies could be a result of genetic/functional trait losses, as well as polymorphism of workers in eusocial animals such as ants and termites. The goal was to investigate this idea in four different eusocial insect species.

Themes and Categories

Project Results

The team took numerous body part measurements normalized by total body length, both from images in collections at the Smithsonian Museum, and also from physical specimens they gathered themselves. Using JMP, they computed correlation matrices between these meaures, and performed cluster analyses. A key finding was that larger relative size of abdomen correlated with smaller relative size of other body parts, which may be evidence of a pre-adaptation towards the development of worker polymorphism.

Download Executive Summary (PDF)

Faculty Sponsor

Project Manager

  • Rick Gawne, Ph.D. candidate, Center for the Philosophy of Biology

Participants

  • Emilie Song, Duke University Biology
  • Xinyu Li, Duke University Biology & Chemistry

Disciplines Involved

  • Biology
  • All quantitative STEM

Related People

Related Projects

United Nations Sustainable Development Goal 7 calls for universal access to affordable, reliable, sustainable, and modern energy. Researchers and practitioners around the world have responded to this call by producing a wealth of energy access data. While many data gaps still exist, are we capturing the fullest potential from the information and research we do have, and what it tells us about how to accelerate energy access? Power for All’s Platform for Energy Access Knowledge (PEAK) is an interactive knowledge platform designed to automatically curate, organize, and streamline large, growing bodies of data into digestible, sharable, and useable knowledge through automated data capture, indexing, and visualization. A team of students led by Rebekah Shirley will consult with Power for All to creatively visualize PEAK’s library, and to explore machine learning and natural language processing tools that can enable auto-extraction and visualization of data for more effective science communication.

Are there relative value opportunities in the global corporate bond markets?  
A team of students will work with Professor Emma Rasiel to understand whether an analysis of credit spreads on bonds issued by international firms in multiple countries over time can shed light on potential arbitrage opportunities. The team will have frequent opportunities to interact with analytics professionals at a leading financial advisory and asset management firm.

 

A team of students will consult with a leading financial advisory and asset management firm that is seeking to understand how big data can shed light on the secondary market for construction machinery. Students will explore a combination of publicly-available datasets that describe the used-machinery market and its potential implications as an indicator for the business cycle. There will be frequent interactions with analytical professionals from the firm.