Black Queen Hypothesis

Project Summary

Xinyu (Cindy) Li (Biology and Chemistry) and Emilie Song (Biology) spent ten weeks exploring the Black Queen Hypothesis, which predicts that co-operation in animal societies could be a result of genetic/functional trait losses, as well as polymorphism of workers in eusocial animals such as ants and termites. The goal was to investigate this idea in four different eusocial insect species.

Themes and Categories
Year
2016

Project Results

The team took numerous body part measurements normalized by total body length, both from images in collections at the Smithsonian Museum, and also from physical specimens they gathered themselves. Using JMP, they computed correlation matrices between these meaures, and performed cluster analyses. A key finding was that larger relative size of abdomen correlated with smaller relative size of other body parts, which may be evidence of a pre-adaptation towards the development of worker polymorphism.

Download Executive Summary (PDF)

Faculty Sponsor

Project Manager

  • Rick Gawne, Ph.D. candidate, Center for the Philosophy of Biology

Participants

  • Emilie Song, Duke University Biology
  • Xinyu Li, Duke University Biology & Chemistry

Disciplines Involved

  • Biology
  • All quantitative STEM

Related People

Related Projects

A team of students collaborating with Duke School of Medicine's Root Causes Fresh Produce Program, community members, and physicians throughout the Duke Health network will help integrate data from food deliveries to Duke Health patients with patient health record data and other available data sources to create a dashboard that can analyze, predict, and manage the Root Causes' "Food as Medicine" program. Specific outcomes will contribute to improving the Program's quantitative evaluation of its health impact as well as efficiency and satisfaction for its patients. Students will be assisted with IRB approval and mentorship from faculty and community advisors.

Project Leads: Esko Brummel, Willis Wong

A team of students led by researchers at the Duke Marine Lab will explore the changing distribution of krill around the Antarctic Peninsula. Krill are a key prey species in this ecosystem, supporting a number of animals including whales, seals, and penguins, but they are dependent on winter sea ice and may be in trouble as climate change progresses. Using data from acoustic zooplankton surveys, students will create maps and other products to visualize the spatial distribution of krill over the past 20 summers, then create metrics that allow us to quantify the way that krill distribution around the Antarctic Peninsula is changing as the climate shifts and ice melts. These results will be key to our understanding of the impacts of climate change on this polar ecosystem.

 

Project Lead: Douglas Nowacek

Project Manager: Amanda Lohmann

 

A team of students will partner closely with the City of Durham's newly formed Community Safety Department.  The Community Safety Department's mission is to identify, implement, and evaluate new approaches to enhance public safety that may not involve a law enforcement response or the criminal justice system. The student team will (1) analyze and identify geographic and temporal patterns in 911 calls for service, (2) conceptualize and build an abstracted data pipeline and tools that would enrich currently available 911 data with other social, economic, and health-related data, (3) explore associations between areas of high call volume, indicators of mental health distress, and histories of dispossession; and (4) identify methods by which future researchers could examine connections between varied 911 incident responses (e.g. police response, unarmed response, joint police, and mental health response) and life trajectories (e.g. arrest, jail time, hospitalization, unemployment, etc.).

 

Project Lead: Greg Herschlag, Anise Van, City of Durham