Visualizing Real Time Data from Mobile Health Technologies

Project Summary

Over ten weeks, Computer Science majors Daniel Bass-Blue and Susie Choi joined forces with Biomedical Engineering major Ellie Wood to prototype interactive interfaces from Type II diabetics' mobile health data. Their specific goals were to encourage patient self-management and to effectively inform clinicians about patient behavior between visits.

Themes and Categories
Year
2017
Contact
Ashlee Valente
Center for Applied Genomics and Precision Medicine
ashlee.valente@duke.edu

Project Results: The team worked with patient data from a study that involved readings from a Fitbit, a Bluetooth glucometer, and a Bluetooth scale. Working in Tableau, they created both patient-facing and clinician-facing interactive visualizations. The former allows patients to identify trends of abnormally low or high blood glucose at certain meals or on certain days, and the latter help clinicians identify problematic days/times for specific patients. They also developed an SMS system which notifies clinicians when patients are experiencing dangerous blood glucose levels.

Partially funded by the Duke University School of Nursing and Duke University School of Medicine

Click here for the Executive Summary

Faculty Lead: Ryan Shaw

Project Manager: Michael Lindon

"Walking into Data+, I thought that Data Science research was about just leveraging math and software to make meaning. What I found was that true Data Scientists become enlightened by their data before they try to speak for it." — Ellie Wood, Biomedical Engineering

Related People

Related Projects

The Air Force’s F-15E Strike Eagle jets have parts that wear down and break, causing unscheduled maintenance events that take away valuable time in the air for critical missions and training. Our team, Limitless Data, is working with Seymour Johnson Air Force Base to mine manually entered maintenance data to visualize and predict aircraft failures. We created a prototype data visualization product that will enable maintainers on the flight line and help them identify and repair critical failures before they happen, keeping jets ready to fly, fight and win.

 

Faculty Lead: Dr. Emma Rasiel

Client Lead: Lt. Devon Burger

Project Manger:  Vignesh Kumaresan

This project aims to improve the computational efficiency of signal operations, e.g., sampling and multiplying signals. We design machine learning-based signal processing modules that use an adaptive sampling strategy and interpolation to generate a good approximation of the exact output. While ensuring a low error level, improvements in computational efficiency can be expected for digital signal processing systems using the implemented self-adjusting modules.

Project Leads: Yi Feng, Vahid Tarokh

 

Click here to view the project team's poster

 

Watch the team's final presentation (on Zoom) here:

 

Mapping History has focused on the categorizing, labelling, digitization, and 3D reconstruction of 16th & 17th century maps & atlases of London and Lisbon. Over the course of the summer, the Mapping History team has developed its own unique analytical dataset by painstakingly labelling every element contained within these maps, used python to digitize this dataset, and, now in the projects final stage, has begun the process of reconstructing these historical perspectives in a 3D game engine.

Project Lead: Philip Stern, Ed Triplett

Project Manager: Sam Horewood

 

View the team's final poster here

Watch the team's final presentation (on Zoom) below: