Quantifying Rare Diseases in Duke Health System

Project Summary

Gary Koplik (Masters in Economics and Computation) and Matt Tribby (CompSci, Statistics) spent ten weeks investigating the burden of rare diseases on the Duke University Health System (DUHS). They worked with a massive set of ICD diagnosis codes and visit data provided by DUHS.

Themes and Categories
Year
2017
Contact
Paul Bendich
Center for Applied Genomics and Precision Medicine
bendich@math.duke.edu

Project Results: The team created cohorts of patients with and without rare disease diagnosis codes and performed exploratory comparisons. They identified key roadblocks to analysis of rare disease created by the current ICD hierarchy and created a compelling plan for future work.

Click here for the Executive Summary

Faculty Lead: Rachel Richesson

Project Manager: Isaac Lavine

 

 

"I've gained an appreciation for the all-important data 'pre-processing' that takes up the vast majority of the effort when working with health data." — Isaac Lavine, Project Manager and PhD Student in Statistical Science at Duke University

Related People

Related Projects

The Air Force’s F-15E Strike Eagle jets have parts that wear down and break, causing unscheduled maintenance events that take away valuable time in the air for critical missions and training. Our team, Limitless Data, is working with Seymour Johnson Air Force Base to mine manually entered maintenance data to visualize and predict aircraft failures. We created a prototype data visualization product that will enable maintainers on the flight line and help them identify and repair critical failures before they happen, keeping jets ready to fly, fight and win.

 

Faculty Lead: Dr. Emma Rasiel

Client Lead: Lt. Devon Burger

Project Manger:  Vignesh Kumaresan

This project aims to improve the computational efficiency of signal operations, e.g., sampling and multiplying signals. We design machine learning-based signal processing modules that use an adaptive sampling strategy and interpolation to generate a good approximation of the exact output. While ensuring a low error level, improvements in computational efficiency can be expected for digital signal processing systems using the implemented self-adjusting modules.

Project Leads: Yi Feng, Vahid Tarokh

 

Click here to view the project team's poster

 

Watch the team's final presentation (on Zoom) here:

 

Mapping History has focused on the categorizing, labelling, digitization, and 3D reconstruction of 16th & 17th century maps & atlases of London and Lisbon. Over the course of the summer, the Mapping History team has developed its own unique analytical dataset by painstakingly labelling every element contained within these maps, used python to digitize this dataset, and, now in the projects final stage, has begun the process of reconstructing these historical perspectives in a 3D game engine.

Project Lead: Philip Stern, Ed Triplett

Project Manager: Sam Horewood

 

View the team's final poster here

Watch the team's final presentation (on Zoom) below: