Quantifying Rare Diseases in Duke Health System

Project Summary

Gary Koplik (Masters in Economics and Computation) and Matt Tribby (CompSci, Statistics) spent ten weeks investigating the burden of rare diseases on the Duke University Health System (DUHS). They worked with a massive set of ICD diagnosis codes and visit data provided by DUHS.

Themes and Categories
Year
2017
Contact
Paul Bendich
Center for Applied Genomics and Precision Medicine
bendich@math.duke.edu

Project Results: The team created cohorts of patients with and without rare disease diagnosis codes and performed exploratory comparisons. They identified key roadblocks to analysis of rare disease created by the current ICD hierarchy and created a compelling plan for future work.

Click here for the Executive Summary

Faculty Lead: Rachel Richesson

Project Manager: Isaac Lavine

 

 

"I've gained an appreciation for the all-important data 'pre-processing' that takes up the vast majority of the effort when working with health data." — Isaac Lavine, Project Manager and PhD Student in Statistical Science at Duke University

Related People

Related Projects

Social and environmental contexts are increasingly recognized as factors that impact health outcomes of patients. This team will have the opportunity to collaborate directly with clinicians and medical data in a real-world setting. They will examine the association between social determinants with risk prediction for hospital admissions, and to assess whether social determinants bias that risk in a systematic way. Applied methods will include machine learning, risk prediction, and assessment of bias. This Data+ project is sponsored by the Forge, Duke's center for actionable data science.

Project Leads: Shelly Rusincovitch, Ricardo Henao, Azalea Kim

Project Manager: Austin Talbot

Aaron Chai (Computer Sciece, Math) and Victoria Worsham (Economics, Math) spent ten weeks building tools to understand characteristics of successful oil and gas licenses in the North Sea. The team used data-scraping, merging, and OCR method to create a dataset containing license information and work obligations, and they also produced ArcGIS visualizations of license and well locations. They had the chance to consult frequently with analytics professionals at ExxonMobil.

Click here to read the Executive Summary

 

Project Lead: Kyle Bradbury

Project Manager: Artem Streltsov

Yueru Li (Math) and Jiacheng Fan (Economics, Finance) spent ten weeks investigating abnormal behavior by companies bidding for oil and gas rights in the Gulf of Mexico. Working with data provided by the Bureau of Ocean Energy Management and ExxonMobil, the team used outlier detection methods to automate the flagging of abnormal behavior, and then used statistical methods to examine various factors that might predict such behavior. They had the chance to consult frequently with analytics professionals at ExxonMobil.

 

Click here to read the Executive Summary

 

Project Lead: Kyle Bradbury

Project Manager: Hyeongyul Roh