MyHealthTeams Data Exploration and Visualization

Project Summary

Angelo Bonomi (Chemistry), Remy Kassem (ECE, Math), and Han (Alessandra) Zhang (Biology, CompSci) spent ten weeks analyzing data from social networks for communities of people facing chronic conditions. The social network data, provided by MyHealth Teams, contained information shared by community members about their diagnoses, symptoms, co-morbidities, treatments, and details about each treatment.

Themes and Categories
Year
2017
Contact
Ashlee Valente
Center for Applied Genomics and Precision Medicine
ashlee.valente@duke.edu

Project Results: The team performed extensive data cleaning, using R and Java, to create a data set suitable for analysis. They then created interactive visualizations of treatment pathways, and built a predictive model for response to medication.

Click here for the Executive Summary

Faculty Lead: Jessie Tenenbaum

Project Manager: Greg Malen

"It was really my first experience working with data, and I found the challenges my students ran into in trying to clean our data surprising. Implementing the code for our primary visualization turned out to be the easiest part of the whole process." — Greg Malen, Project Manager and Visiting Assistant Professor of Mathematics, Duke Mathematics

Related People

Related Projects

Social and environmental contexts are increasingly recognized as factors that impact health outcomes of patients. This team will have the opportunity to collaborate directly with clinicians and medical data in a real-world setting. They will examine the association between social determinants with risk prediction for hospital admissions, and to assess whether social determinants bias that risk in a systematic way. Applied methods will include machine learning, risk prediction, and assessment of bias. This Data+ project is sponsored by the Forge, Duke's center for actionable data science.

Project Leads: Shelly Rusincovitch, Ricardo Henao, Azalea Kim

Project Manager: TBD

Producing oil and gas in the North Sea, off the coast of the United Kingdom, requires a lease to extract resources from beneath the ocean floor and companies bid for those rights. This team will consult with professionals at ExxonMobil to understand why these leases are acquired and who benefits. This requires historical data on bid history to investigate what leads to an increase in the number of (a) leases acquired and (b) companies participating in auctions. The goal of this team is to create a well-structured dataset based on company bid history from the U.K. Oil and Gas Authority; data which will come from many different file structures and formats (tabular, pdf, etc.). The team will curate these data to create a single, tabular database of U.K. bid history and work programs.

Producing oil and gas in the Gulf of Mexico requires rights to extract these resources from beneath the ocean floor and companies bid into the market for those rights. The top bids are sometimes significantly larger than the next highest bids, but it’s not always clear why this differential exists and some companies seemingly overbid by large margins. This team will consult with professionals at ExxonMobil to curate and analyze historical bid data from the Bureau of Ocean Energy Management that contains information on company bid history, infrastructure, wells, and seismic survey data as well as data from the companies themselves and geopolitical events. The stretch goal of the team will be to see if they can uncover the rationale behind historic bidding patterns. What do the highest bidders know that other bidders to not (if anything)? What characteristics might incentivize overbidding to minimize the risk of losing the right to produce (i.e. ambiguity aversion)?