Mapping the Ocean Floor

Project Summary

William Willis (Mechanical Engineering, Physics) and Qitong Gao (Masters Mechanical Engineering) spent ten weeks with the goal of mapping the ocean floor autonomously with high resolution and high efficiency. Their efforts were part of a team taking part in the Shell Ocean Discovery XPRIZE, and they made extensive use of simulation software built from Bellhop, an open-source program distributed by HLS Research.

Themes and Categories
Contact
Paul Bendich
Mathematics
bendich@math.duke.edu

Project Results: The team adapted Synthetic Aperture Sonar (SAS) methodology to produce high-resolution images. They also built a Convolutional Neural Network that classified, with high accuracy, different features on the ocean floor.

Partially funded by the Duke Marine Lab

Click here for the Executive Summary

Faculty Leads:

Martin Brooke

Douglas Nowacek

Tyler Bletsch

Project Manager: Vaishakhi Mayya

 

  • "We made a lot of progress that would not have happened otherwise." — Martin Brooke, Associate Professor of Electrical and Computer Engineering, Pratt School of Engineering

  •  

Related People

Related Projects

United Nations Sustainable Development Goal 7 calls for universal access to affordable, reliable, sustainable, and modern energy. Researchers and practitioners around the world have responded to this call by producing a wealth of energy access data. While many data gaps still exist, are we capturing the fullest potential from the information and research we do have, and what it tells us about how to accelerate energy access? Power for All’s Platform for Energy Access Knowledge (PEAK) is an interactive knowledge platform designed to automatically curate, organize, and streamline large, growing bodies of data into digestible, sharable, and useable knowledge through automated data capture, indexing, and visualization. A team of students led by Rebekah Shirley will consult with Power for All to creatively visualize PEAK’s library, and to explore machine learning and natural language processing tools that can enable auto-extraction and visualization of data for more effective science communication.

Are there relative value opportunities in the global corporate bond markets?  
A team of students will work with Professor Emma Rasiel to understand whether an analysis of credit spreads on bonds issued by international firms in multiple countries over time can shed light on potential arbitrage opportunities. The team will have frequent opportunities to interact with analytics professionals at a leading financial advisory and asset management firm.

 

A team of students will consult with a leading financial advisory and asset management firm that is seeking to understand how big data can shed light on the secondary market for construction machinery. Students will explore a combination of publicly-available datasets that describe the used-machinery market and its potential implications as an indicator for the business cycle. There will be frequent interactions with analytical professionals from the firm.