Mapping the Ocean Floor

Project Summary

William Willis (Mechanical Engineering, Physics) and Qitong Gao (Masters Mechanical Engineering) spent ten weeks with the goal of mapping the ocean floor autonomously with high resolution and high efficiency. Their efforts were part of a team taking part in the Shell Ocean Discovery XPRIZE, and they made extensive use of simulation software built from Bellhop, an open-source program distributed by HLS Research.

Themes and Categories
Year
2017
Contact
Paul Bendich
Mathematics
bendich@math.duke.edu

Project Results: The team adapted Synthetic Aperture Sonar (SAS) methodology to produce high-resolution images. They also built a Convolutional Neural Network that classified, with high accuracy, different features on the ocean floor.

Partially funded by the Duke Marine Lab

Click here for the Executive Summary

Faculty Leads:

Martin Brooke

Douglas Nowacek

Tyler Bletsch

Project Manager: Vaishakhi Mayya

 

  • "We made a lot of progress that would not have happened otherwise." — Martin Brooke, Associate Professor of Electrical and Computer Engineering, Pratt School of Engineering

Related People

Related Projects

Alexa Goble (Finance) joined Econ majors Chavez Cheong and Eli Levine in a ten-week exploration of mortgage enforcement actions related to the financial crisis from earlier in this century. Using NLP techniques on mortgage data from Ohio and Massachusetts, the team validated a new experimental approach to understanding the dynamics between state regulatory agencies, mortgage lenders, brokers, and loan originators. This project was a continuation of two previous Data+ projects:

https://bigdata.duke.edu/projects/american-predatory-lending-global-financial-crisis

https://bigdata.duke.edu/projects/american-predatory-lending-and-global-financial-crisis-year-2

 

View the team's project poster here

Watch the team's final presentation on Zoom:

 

Project Lead: Lee Reiners

Project Manager: Malcolm Smith Fraser

Stats/Sociology major Mitchelle Mojekwu joined Neuroscience majors Kassie Hamilton and Zineb Jaidi in a ten-week exploration of data relevant to an upcoming public school zone redistricting in Durham County. Using information acquired from the General Social Survey and the US Census, the team applied modern mathematical and statistical methods for generating proposed redistricting plans, with the aim of providing decision-makers with information they can use to produce school districts that are equitable and reflective of the Durham County student population.

View the team's project poster here

Watch the team's final presentation on Zoom:

 

Faculty Lead: Greg Herschlag

Project Manager: Bernard Coles

 

Pryia Juarez (BME/ECE), Jonathan Pilland (ECE/BME), and Matthew Traum (CS/Econ) spent teen weeks analyzing sensor data synthesized by an agile waveform generator. The team used deep reinforcement learning techniques to understand the performance of different synthetic agents representing potential attackers to the sensor system.

 

View the team's project poster here

Watch the team's final presentation on Zoom:

 

Faculty leads: Robert Calderbank, Vahid Tarokh, Ali Pezeshki

Client leads: Dr. Lauren Huie, Dr. Elizabeth Bentley, Dr. Zola Donovan, Dr. Ashley Prater-Bennette, Dr. Erin Trip

Project Manger: Suya Wu