GMRA Regression

Project Summary

We present a framework for high-dimensional regression using the GMRA data structure. In analogy to a classical wavelet decomposition of function spaces, a GMRA is a tree-based decomposition of a data set into local linear projections.

Themes and Categories
Contact
David Lawlor
Mathematics
djl@math.duke.edu

Moreover, for new points, GMRA admits a fast algorithm for computing the projection coefficients on the already-learned dictionary. Within each node of the tree one can also assign regression coefficients in any manner; here we study the simple case of weighted linear regression. We explore the performance of the method using synthetic data as well as galactic spectra from the Sloan Digital Sky Survey, and compare against other methods for regression in high dimensions.

Related People

Related Projects

A team of students led by a computational biologist and a cell biologist will develop methods to identify cell subsets and their developmental, maturation and activation lineage relationships using deep learning approaches. Students will learn to process single cell RNA sequencing data and use the Python programming language and TensorFlow to characterize lung stem cells involved in wound healing. This work will help Duke researchers establish a deep learning pipeline for single cell analysis with applications in immunology, cell biology and cancer.

Marine mammals exhibit extreme physiological and behavioral adaptions that allow them to dive hundreds to thousands of meters underwater despite their need to breathe air at the surface. Through the development of new remote monitoring technologies, we are just beginning to understand the mechanisms by which they are able to execute these extreme behaviors. Long- term animal-borne tags can now record location, dive depth, and dive duration and then transmit these data to satellite receivers, enabling remote access to behavior occurring both many kilometers out to sea and several kilometers below the ocean surface. 

The aim of this Data Expedition was for students to learn hands-on data visualization techniques using a variety of data types. Students first discussed how data visualization is useful, and tips to make graphs both visually appealing and easy to understand.