Ghost Bikes

Project Summary

Lauren Fox (Cultural Anthropology) and Elizabeth Ratliff (Statistics, Global Health) spent ten weeks analyzing and mapping pedestrian, bicycle, and motor vehicle data provided by Durham's Department of Transportation. This project was a continuation of a seminar on "ghost bikes" taught by Prof. Harris Solomon.

Year
2017
Contact
Paul Bendich
Mathematics
bendich@math.duke.edu

Project Results: After extensive data cleaning and consultation with Transportation planners, the team used QGIS to create an R Shiny app that allows users to view and interact with crash maps, as well as understanding them against a backdrop of variables such as time-of-day, weather conditions, and sociodemographic factors.

The team was able to make a series of data-driven policy recommendation to their community partners.

Partially sponsored by an NSF CAREER Award and by the Franklin Humanities Institute Health Humanities Lab

Click here for the Executive Summary

Faculty Lead: Harris Solomon

Project Manager: Collin Mueller, Ph.D. candidate in Sociology

Analytics for Safety in Durham:

 

 

Related People

Related Projects

Social and environmental contexts are increasingly recognized as factors that impact health outcomes of patients. This team will have the opportunity to collaborate directly with clinicians and medical data in a real-world setting. They will examine the association between social determinants with risk prediction for hospital admissions, and to assess whether social determinants bias that risk in a systematic way. Applied methods will include machine learning, risk prediction, and assessment of bias. This Data+ project is sponsored by the Forge, Duke's center for actionable data science.

Project Leads: Shelly Rusincovitch, Ricardo Henao, Azalea Kim

Project Manager: Austin Talbot

Aaron Chai (Computer Sciece, Math) and Victoria Worsham (Economics, Math) spent ten weeks building tools to understand characteristics of successful oil and gas licenses in the North Sea. The team used data-scraping, merging, and OCR method to create a dataset containing license information and work obligations, and they also produced ArcGIS visualizations of license and well locations. They had the chance to consult frequently with analytics professionals at ExxonMobil.

Click here to read the Executive Summary

 

Project Lead: Kyle Bradbury

Project Manager: Artem Streltsov

Yueru Li (Math) and Jiacheng Fan (Economics, Finance) spent ten weeks investigating abnormal behavior by companies bidding for oil and gas rights in the Gulf of Mexico. Working with data provided by the Bureau of Ocean Energy Management and ExxonMobil, the team used outlier detection methods to automate the flagging of abnormal behavior, and then used statistical methods to examine various factors that might predict such behavior. They had the chance to consult frequently with analytics professionals at ExxonMobil.

 

Click here to read the Executive Summary

 

Project Lead: Kyle Bradbury

Project Manager: Hyeongyul Roh