Geometry of Weather

Project Summary

Joy Patel (Math and CompSci) and Hans Riess (Math) spent ten weeks analyzing massive amounts of simulated weather data supplied by Spectral Sciences Inc. Their goal was to investigate ways in which advanced mathematical techniques could assist in quantifying storm intensity, helping to augment today's more qualitatively-based methods.

Themes and Categories
Year
2015
Contact
Paul Bendich
bendich@math.duke.edu

Project Results: The team used a mixture of novel geometric and topological methods, as well as eye-detection techniques, and built a classifier that performed very well on strong storms. They presented their work in several venues, including at the Air Force Research Laboratories in Rome, NY.

Download the Executive Summary

Faculty Sponsor: John Harer, Duke University Department of Mathematics and Electrical and Computer Engineering

Project Managers: Justin Curry (Math) and Francis Motta (Math)

Team Members: Joy Patel and Hans Riess

 

Related People

Related Projects

Social and environmental contexts are increasingly recognized as factors that impact health outcomes of patients. This team will have the opportunity to collaborate directly with clinicians and medical data in a real-world setting. They will examine the association between social determinants with risk prediction for hospital admissions, and to assess whether social determinants bias that risk in a systematic way. Applied methods will include machine learning, risk prediction, and assessment of bias. This Data+ project is sponsored by the Forge, Duke's center for actionable data science.

Project Leads: Shelly Rusincovitch, Ricardo Henao, Azalea Kim

Project Manager: Austin Talbot

Aaron Chai (Computer Sciece, Math) and Victoria Worsham (Economics, Math) spent ten weeks building tools to understand characteristics of successful oil and gas licenses in the North Sea. The team used data-scraping, merging, and OCR method to create a dataset containing license information and work obligations, and they also produced ArcGIS visualizations of license and well locations. They had the chance to consult frequently with analytics professionals at ExxonMobil.

Click here to read the Executive Summary

 

Project Lead: Kyle Bradbury

Project Manager: Artem Streltsov

Yueru Li (Math) and Jiacheng Fan (Economics, Finance) spent ten weeks investigating abnormal behavior by companies bidding for oil and gas rights in the Gulf of Mexico. Working with data provided by the Bureau of Ocean Energy Management and ExxonMobil, the team used outlier detection methods to automate the flagging of abnormal behavior, and then used statistical methods to examine various factors that might predict such behavior. They had the chance to consult frequently with analytics professionals at ExxonMobil.

 

Click here to read the Executive Summary

 

Project Lead: Kyle Bradbury

Project Manager: Hyeongyul Roh