Baseball Analytics with Statcast

Project Summary

Graduate Student: Jacob Coleman, 3rd year Ph.D. student in Statistical Science

Faculty Instructor: Colin Rundel

Class: STA 112, Data Science

Themes and Categories

Graduate Student: Jacob Coleman, 3rd year Ph.D. student in Statistical Science

Faculty Instructor: Colin Rundel

Class: STA 112, Data Science

  • Data management, summarization, and exploration with R package dplyr
  • Data visualization through R package ggplot2
  • Worked with state-of-the-art data pulled from online source 


In this Data Exploration, students were introduced to baseball dataset Statcast, downloaded from, that included every pitch thrown in the first week of the 2016 season, with 19 characteristics. The students were tasked with using R packages dplyr and ggplot2 to answer data exploration and summarizion questions. The exercises challenged them to use information about the data as well as newly acquired computation skills.

The Statcast data is owned by MLB Advanced Media, L.P. and was downloaded from a search performed on baseballsa- for all pitches from 4/1/16 to 4/7/16. Statcast is a relatively new dataset (introduced in 2015), including all pitch characteristics from its precurser PitchF/X (such as pitch movement, type, start and end velocity, etc.). Statcast also added tracking of the ball during the entirety of the play, as well as tracking for all fielders. Full Statcast data is not yet available to the public, but Baseball Savant allows the public to have access to Statcast-added batted ball variables such as launch angle and batted ball speed.

Dplyr is an extremely powerful tool for exploring data, using simple structure to perform complex data management tasks. Students were introducted to dplyr in a previous lecture, and used the Statcast data to gain hands-on experience working with data. Their tasks ranged from simple summaries to sophisticated manipulation (as real data is rarely in perfect form for desired analysis). They also integrated the R package ggplot2 to visualize some of their findings and draw futher conclusions. 


Related Projects

This data expeditions module used three full course sessions to introduce undergraduate hydrology students with minimal programming background to:

  • Public water data (water quantity and chemistry)

  • Spatial analysis of water data

  • 2 core, spatial datasets produced by the USGS that enable spatial analysis

  • The programming language R

  • R based tools for water data

  • Spatial analysis and maps in R

Exposure to local pathogens is a significant selective pressure on the human genome: the strongest selective forces identified in modern human populations are for mutations that confer increased resistance to malaria infection. Understanding how human genetic variation impacts susceptibility to pathogens can reveal important aspects of disease biology and reveal novel treatment targets. By using genome-wide association of infection-related cellular traits, we can connect human genetic variation to disease susceptibility in a controlled laboratory environment. Identification of the variants, genes, and cellular pathways involved in infectious disease pathogenesis can inform host-directed therapeutics, clinically effective risk stratification, and epidemiological prediction. This data expedition explores the effect of host genetic variation on chemokine response to Chlamydia infection.

How does human habitation relate to patterns in the natural environment? How do species respond to the presence of, and changes in, habitation? In this Data Expedition, students make use of public datasets from the Census and the Global Biodiversity Information Facility to examine relationships between individual species and human settlements. Students develop introductory skills in spatial data manipulation and visualization in R, exposure to powerful datasets and tools, and critical thinking skills in assessing dataset quality and bias.