Geometric Analysis of Musical Audio Data

Project Summary

In this work, we turn musical audio time series data into shapes for various tasks in music matching and musical structure understanding. 

Themes and Categories
Contact
Christopher Tralie
Electrical and Computer Engineering
chris.tralie@gmail.com

In particular, we use sliding window representations of chunks of audio to create high dimensional time-ordered point clouds, and we extract information by analyzing the geometry of these clouds.  We have shown, for example, that sequences of these shapes can be used to identify two different versions of the same song, or "cover songs."  We have also shown that both local and global musical properties can be expressed in geometric language.  For instance, hip hop is very "wiggly" while classical music is very "smooth."  Choruses and verses tend to live in distinct clusters connected by paths, and "bridges," or detours to a different musical idea, show up as large loops.

Related People

Related Projects

Liuyi Zhu (Computer Science, Math), Gilad Amitai (Masters, Statistics), Raphael Kim (Computer Science, Mechanical Engineering), and Andreas Badea (East Chapel Hill High School) spent ten weeks streamlining and automating the process of electronically rejuvenating medieval artwork. They used a 14th-century altarpiece by Francescussio Ghissi as a working example.

Selen Berkman (ECE, CompSci), Sammy Garland (Math), and Aaron VanSteinberg (CompSci, English) spent ten weeks undertaking a data-driven analysis of the representation of women in film and in the film industry, with special attention to a metric called the Bechdel Test. They worked with data from a number of sources, including fivethirtyeight.com and the-numbers.com.

Students in the Performance and Technology Class create a series of performances that explore the interface between society and our machines. With the theme of the cloud to guide them, they have created increasingly complex art using digital media, microcontrollers, and motion tracking. Their work will be on display at the Duke Choreolab 2016.