Building a Duke SLED (Duke Surgery Longitudinal Education Database)

Project Summary

A team of students led by Dr. Shanna Sprinkle of Duke Surgery will combine success metrics of Duke Surgery residents from a set of databases and create a user interface for residency program directors and possibly residents themselves to view and better understand residency program performance.

Themes and Categories
Contact
Ashlee Valente
Center for Applied Genomics and Precision Medicine
ashlee.valente@duke.edu

Using MySQL or Oracle, students will access and aggregate an incredible amount of information about Duke general surgery residents including operative case logs, exam scores, and research publications. Students will then create a dashboard for this data, including visualizations and basic statistical summaries. This project will help Duke Surgery facilitate future education research, generate better resident reports, provide an insightful user interface, and eventually have the potential to build models to predict resident performance and incorporate an alert system for more timely identification and intervention of individual and program level issues. Partially funded by the Duke University Surgery Department.

Faculty Lead: Dr. Shanna Sprinkle

Project Manager: Katherine King, Visiting Assistant Professor in the Department of Community and Family Medicine

Student Team: Surabhi Beriwal, Vivian Qi


Dr. Katherine King, Dr. Shanna Sprinkle, Surabhi Beriwal and Vivian Qi at the 2017 Data+ Poster Session

 

Related People

Related Projects

Marine mammals exhibit extreme physiological and behavioral adaptions that allow them to dive hundreds to thousands of meters underwater despite their need to breathe air at the surface. Through the development of new remote monitoring technologies, we are just beginning to understand the mechanisms by which they are able to execute these extreme behaviors. Long- term animal-borne tags can now record location, dive depth, and dive duration and then transmit these data to satellite receivers, enabling remote access to behavior occurring both many kilometers out to sea and several kilometers below the ocean surface. 

The aim of this Data Expedition was for students to learn hands-on data visualization techniques using a variety of data types. Students first discussed how data visualization is useful, and tips to make graphs both visually appealing and easy to understand. 

The aim of our data expeditions course was to give students in Bio 190S-0.2, a summer session course in sensory systems, an introduction to how real data may actually look and how they may actually be analyzed. Over the course of a two-hour class session, 16 students ranging from 16-22 years old were given the opportunity to explore a dataset on the color vision capabilities of three species of cleaner shrimp.