GMRA Regression

Project Summary

We present a framework for high-dimensional regression using the GMRA data structure. In analogy to a classical wavelet decomposition of function spaces, a GMRA is a tree-based decomposition of a data set into local linear projections.

Themes and Categories
Contact
David Lawlor
Mathematics
djl@math.duke.edu

Moreover, for new points, GMRA admits a fast algorithm for computing the projection coefficients on the already-learned dictionary. Within each node of the tree one can also assign regression coefficients in any manner; here we study the simple case of weighted linear regression. We explore the performance of the method using synthetic data as well as galactic spectra from the Sloan Digital Sky Survey, and compare against other methods for regression in high dimensions.

Related People

Related Projects

Marine mammals exhibit extreme physiological and behavioral adaptions that allow them to dive hundreds to thousands of meters underwater despite their need to breathe air at the surface. Through the development of new remote monitoring technologies, we are just beginning to understand the mechanisms by which they are able to execute these extreme behaviors. Long- term animal-borne tags can now record location, dive depth, and dive duration and then transmit these data to satellite receivers, enabling remote access to behavior occurring both many kilometers out to sea and several kilometers below the ocean surface. 

The aim of this Data Expedition was for students to learn hands-on data visualization techniques using a variety of data types. Students first discussed how data visualization is useful, and tips to make graphs both visually appealing and easy to understand. 

A new model is developed for joint analysis of ordered, categorical, real and count data. In the motivating application, the ordered and categorical data are answers to questionnaires, the (word) count data correspond to the text questions from the questionnaires, and the real data correspond to fMRI responses for each subject. We also combine the analysis of these data with single-nucleotide polymorphism (SNP) data from each individual.