Spread Pilots

Robert Calderbank

Duke University

Abstract: will describe how to use filters in the discrete delay-Doppler domain to create noise-like waveforms with excellent PAPR (around 5dB).

Background - Zak-OTFS and Integration of Sensing and Communication—in collaboration with Muhammad Ubadah, Saif Khan Mohammed, Ronny Hadani, Shachar Kons, and Ananthanarayanan Chockalingam

Disclosure: Advisor to Cohere Technologies

Symplectic Transforms in Radar

Displacement operator: $D(\tau, \nu) \phi(t) = e^{-\nu \tau} e^{j\nu t} \phi(t + \tau)$

Self-ambiguity function: $A_{\phi}(\tau, \nu) = \langle \phi, D(\tau, \nu), \phi \rangle$

Symplectic transform: For example, Linear Frequency Modulation (LFM)

Chirp with slope $q: U(q): \phi(t) \rightarrow \phi_q(t) = e^{j q t^2} \phi(t)$

Symplectic transforms rotate self-ambiguity functions

$$A_{\phi_q}(\tau, \nu) = \left\langle \phi_q, D(\tau, \nu), \phi_q \right\rangle = \left\langle \phi, U(q)^+ D(\tau, \nu) U(q), \phi \right\rangle$$

$$A_{\phi_q}(\tau, \nu) = \left\langle \phi, D \left[S_q^{-1} \begin{pmatrix} \tau \\ \nu \end{pmatrix} \right], \phi \right\rangle \text{ with } S_q = \begin{bmatrix} 1 & 0 \\ 2q & 1 \end{bmatrix}$$

S. D. Howard et. al. (2004), Waveform Libraries for Radar Tracking

Discrete DD Domain Filters in Communications

MN-Periodic Discrete Chirp Filter with slope q (coprime to MN)

$$w[k,l] = \frac{1}{MN} e^{j 2\pi \frac{q(k^2+l^2)}{MN}}, \quad for \ k,l \in \mathbb{Z}$$

Spread pilot: $x_{s,dd}[k,l] = w_s[k,l] *_{\sigma} x_{p,dd}[k,l]$

 $x_{s,dd}$ is quasi-periodic, $x_{s,dd}$ is periodic with period MN along delay and Doppler axis

 $w[k,l] \otimes_{\sigma} x_{p,dd}[k,l] : MN$ -Periodic twisted convolution of $x_{p,dd}[k,l]$ with w[k,l] (the MN-periodic extension of the discrete filter)

Theorem: $w_s[k, l] *_{\sigma} x_{p,dd}[k, l] = w[k, l] *_{\sigma} x_{p,dd}[k, l]$

Degrees of Freedom: a discrete DD domain filter is specified by a vector in $\mathbb{C}^{M^2N^2}$

Chirp Filters Rotate the Period Lattice

Point pulsone $x_p:A_{x_p,x_p}[k,l]$ supported on the period lattice Λ_p

Blue dots: Information lattice Λ_{dd}

Green dots: Period lattice Λ_p

Red dots: Dual lattice Λ_{dd}^{\perp}

Spread pulsone x_s

Theorem: Ambiguity function $A_{\chi_s,\chi_s}[k,l]$ is supported on a rotated lattice Λ_q given by

$$(1-2q \theta) \Lambda_q = \begin{bmatrix} \theta & 1 \\ 1 & 2q \end{bmatrix} \Lambda_p \quad \text{where } \theta = (2q)^{-1} - 2q \pmod{MN}$$

Spreading in TD and DD domain

Peak to Average Power Ratio (PAPR)

Complementary CDF (CCDF) of Instantaneous to Average Power Ratio (IAPR) : RRC transmit filter with roll-off factors $\beta_{\tau} = \beta_{\nu} = 0.6$.

IAPR Summary:

Spread pulsone ∼ 5 dB

vs. p

point pulsone ~ 15 dB

Data + spread pulsone ∼ 8 dB

VS.

Data + point pulsone ~ 12 dB

Geometry of Sensing

Blue dots: Λ_q

$$M=11, N=13, q=5$$
 Pilot location: $\left(k_p \text{ , } l_p\right)=(0 \text{ , } 0 \text{)}$

Green rectangle with black border (Ω) : support of $h_{\rm eff}[k,l]$

Translates of Ω by Λ_q do not overlap : No DD domain aliasing

Possible to accurately estimate $h_{\rm eff}[k,l]$ on Λ_{dd} from the response received within Ω

Discrete DD domain $y_{dd}[k, l]$ $x_{dd}[k, l]$ Sample Lift Continuous $(x_{dd}(\tau, \nu))^{DD}$ domain $y_{dd}^{W_{rx}}(\tau, \nu)$ $x_{dd}^{w_{tx}}(\tau,\nu)$ $y_{dd}(\tau, \nu)$ Z_t^{-1} $\boldsymbol{Z_t}$ **Time** $r_{td}(t)$ $s_{td}(t)$ domain

Filters in the Discrete DD Domain

Summary

Possible to construct spread waveforms with desirable characteristics by applying a chirp filter in the discrete DD domain to a point pulsone

Low PAPR: about 5 dB versus 15 dB for the point Pulsone

Possible to read off the I/O relation provided a second crystallization condition is satisfied w.r.t. Λ_q