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• Making operational decisions in wireless networks entails solving large-scale constrained optimization problems. 

• Solving these problems is very challenging, leading to the design and use of heuristic methods. 

• We can leverage data to learn better autonomous network management policies using machine learning 

Autonomous Wireless Networks
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• Network realizations might exist in which enforcing performance constraints leads to catastrophic performance. 

• Autonomous wireless networks must remain operational over a wide range of network realizations. 

• We have developed a notion of resilience, where performance constraint levels are adapted autonomously. 

• Resilience is accomplished by elastic relaxation of constraints in proportion to marginal performance gains. 

Learning to Adapt Problem Specifications
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• Consider a wireless network with  access points  and  users . 

• Let  denote the subset of users associated to , . 

• We assume each user is only served by a single AP. 

• For every user , we use  to denote its serving AP. 

• Two types of resource allocation decisions we are interested in: 

• User selection  : Whether or not each user is served at each time slot. 

• No more than one user can be served by a given AP at a given time. 

• Power control : What transmit power to use at each AP. 

• Shannon capacity of the link between  and :     

• Signal-to-interference-plus-noise ratio (SINR) at : 

 

m {𝖠𝖯1, …, 𝖠𝖯m} n {𝖴𝖤1, …, 𝖴𝖤n}

ℛi 𝖠𝖯i i = 1,…, m

𝖴𝖤j [ j]

γ ∈ {0,1}n

p ∈ [0,Pmax]m

𝖠𝖯[ j] 𝖴𝖤j fj(H, p, γ) = log2(1 + 𝖲𝖨𝖭𝖱j(H, p, γ)) .

𝖴𝖤j

𝖲𝖨𝖭𝖱j(H, p, γ) =
γj h[ j]j

2
p[ j]

N + ∑m
i=1, i≠[ j] |hij |

2 pi
.

Wireless Resource Allocation
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• The wireless network state is stochastic  Performance should be optimized over long-term windows. 

• The ergodic average rate of each user is bounded by the ergodic Shannon limit . 

• Certain applications may impose requirements on the long-term average performance of each user.

→

𝔼H[ fj(H, p, γ)]

Wireless Resource Allocation under Constraints
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max
p,γ,x

𝒰(x),

s.t. x ≤ 𝔼H [f(H, p(H), γ(H))],
x ≥ fmin,
p(H) ∈ [0,Pmax]m,

γ(H) ∈ {0,1}n, ∑
j∈ℛi

γj(H) = 1,∀i ∈ {1,…, m} .



• In practice, system requirements may be infeasible in some extreme scenarios. 

• They could be relaxed just enough to find a feasible solution, leading to resilient resource allocation policies. 

•  denote the non-negative slack variables that adapt the requirements for all users in the networks.z ≥ 0

Resilient Operation of Wireless Networks
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P⋆(z) = max
p,γ,x

𝒰(x),

s.t. x ≤ 𝔼H [f(H, p(H), γ(H))],
x ≥ fmin − z,
p(H) ∈ [0,Pmax]m,

γ(H) ∈ {0,1}n, ∑
j∈ℛi

γj(H) = 1,∀i ∈ {1,…, m} .



• We desire the slack  to be as small as possible, so we associate a cost of  to it. 

• Resilient policies compromise to adapt: The more constraints are relaxed, the more the objective yields. 

• Elastic relaxation of constraints in proportion to marginal performance gains leads to resilience.

z h(z) =
α
2

∥z∥2
2

Resilience by Compromise
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P⋆(z) = max
p,γ,x

𝒰(x),

s.t. x ≤ 𝔼H [f(H, p(H), γ(H))],
x ≥ fmin−z,
p(H) ∈ [0,Pmax]m,

γ(H) ∈ {0,1}n, ∑
j∈ℛi

γj(H) = 1,∀i ∈ {1,…, m} .

  Definition:  is the optimal value of the slack if and only if .z⋆ ≥ 0 ∇zP⋆(z) |z=z⋆ = αz⋆



• We can include the slack cost as a regularization term, and add the slacks as optimization variables:

Finding the Optimal Slack Levels
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P⋆ = max
p,γ,x,z

𝒰(x) −
α
2

∥z∥2
2,

s.t. x ≤ 𝔼H [f(H, p(H), γ(H))],
x ≥ fmin−z,
p(H) ∈ [0,Pmax]m,

γ(H) ∈ {0,1}n, ∑
j∈ℛi

γj(H) = 1,∀i ∈ {1,…, m},

z ≥ 0 .



• In this classical formulation, resource allocation decisions must be recalculated for any given network state . 

• This makes learning and deploying such a policy infeasible in practice. 

• We parameterize the power control and user selection policies: .  

• The advantage of parameterization is that we do not need to solve the problem online to find the decisions.

H

p(H) → p(H; θp), γ(H) → γ(H; θγ)

Policy Parameterization
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max
p,γ,x,z

𝒰(x) −
α
2

∥z∥2
2,

s.t. x ≤ 𝔼H [f(H, p(H), γ(H))],
x ≥ fmin − z,
p(H) ∈ [0,Pmax]m, z ≥ 0,

γ(H) ∈ {0,1}n, ∑
j∈ℛi

γj(H) = 1,∀i .

Unparameterized formulation

max
θp,θγ,x,z

𝒰(x) −
α
2

∥z∥2
2,

s.t. x ≤ 𝔼H [f(H, p(H; θp), γ(H; θγ))],
x ≥ fmin − z,
p(H; θp) ∈ [0,Pmax]m, z ≥ 0

γ(H; θγ) ∈ {0,1}n, ∑
j∈ℛi

γj(H; θγ) = 1,∀i .

Parameterized formulation



• We move to the Lagrangian dual domain and associate a set of dual variables  to the constraints. 

• The remaining constraints on  are assumed implicit (i.e., automatically satisfied by the parameterization) 

• The Lagrangian function can then be written as 

 

• We then seek to maximize the Lagrangian over the primal variables while minimizing it over : 

λ, μ

p, γ, z

ℒ(θp, θγ, x, z, λ, μ) = 𝒰(x) −
α
2

∥z∥2
2 − λT [x − 𝔼H [f(H, p(H; θp), γ(H; θγ))]] − μT [fmin − z − x] .

λ, μ

D⋆ = min
λ,μ

max
θp,θγ,x,z

ℒ(θp, θγ, x, z, λ, μ)

Learning in the Dual Domain
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• The duality gap of the unparameterized problem is null, but that is not the case with paramaterization. 

• Nevertheless, the duality gap with parameterization is bounded for near-universal parameterizations. 

• The closeness of the two problems allows us to use stochastic primal-dual methods to find the optimal policies.

The Duality Gap is Bounded
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Theorem: Under certain assumptions, for near-universal parameterizations with degree  and an -Lipschitz 
performance function , the dual value  is bounded as 

ϵ L
f D⋆

P⋆ − ϵ L ∥[λ⋆; μ⋆]∥1 ≤ D⋆ ≤ P⋆,

N. NaderiAlizadeh, M. Eisen, and A. Ribeiro, "Learning resilient radio resource management policies with graph neural networks," IEEE Transactions on Signal Processing, Mar. 2023.



Iterative Unsupervised Primal-Dual Updates
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Update policy parameters 

θp
k+1 = θp

k + ηp ∇θp{λT𝔼H [f(H, p(H), γ(H))]}
θγ

k+1 = θγ
k + ηγ ∇θγ{λT𝔼H [f(H, p(H), γ(H))]}

Update rate and slack variables 

xk+1 = xk + ηx (∇xk{𝒰(xk)} + μk − λk)
zk+1 = [zk + ηz (μk − αzk)]+

Update dual variables 

λk+1 = [λk − ηλ (xk − 𝔼H [f(H, p(H), γ(H))])]
+

μk+1 = [μk − ημ (fmin − zk − xk)]+

ℒ(θp, θγ, x, z, λ, μ) = 𝒰(x) −
α
2

∥z∥2
2 − λT [x − 𝔼H [f(H, p(H; θp), γ(H; θγ))]] − μT [fmin − z − x] .

k ← k + 1

Given a dataset with a finite number of 
samples, expectations are replaced with 
empirical means.



• We consider the data structure in the form of a directed graph . 

•  denotes the set of nodes, each representing a user. 

•  denotes the set of directed edges, with self-loop signal edges, and cross-AP interference edges. 

•  denotes the edge weight function, which we define as .

𝒢 = (𝒱, ℰ, w)

𝒱 = {1,…, n}

ℰ ⊆ 𝒱 × 𝒱

w : ℰ → ℝ w(hij) ∝ log (Pmax |h[i]j |
2 /N)

Modeling the Network Data Structure as a Graph
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• We leverage graph neural network (GNN) architectures to parameterize the resource allocation policies. 

• Each node  is endowed with a vector of initial features  (e.g., proportional-fairness ratio, SNR, etc.) 

• Node features are updated through a sequence of  message-passing GNN layers as 

v ∈ 𝒱 y0
v ∈ ℝF0

L

yl
v = Ψl (yl−1

v , w(v, v), {yl−1
u , w(u, v)}u∈𝒱\{v}:(u,v)∈ℰ

; θl), ∀l ∈ {1,2,…, L} .

Graph Neural Network (GNN) Parameterizations
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• Let  denote the final node features, or node embeddings, at the output of the GNN. 

• The node embeddings are converted to resource allocation decisions using linear projections . 

• Power control: For each , we derive its transmit power level as 

 

• User selection: For each , each of its associated users  is served with probability 

sv = yL
v ∈ ℝFL, ∀v ∈ 𝒱

bp, bγ ∈ ℝFL

𝖠𝖯i, i ∈ {1,…, m}

pi = Pmax ⋅ σ
1

|ℛi |
bp

T ∑
j∈ℛi

sj .

𝖠𝖯i, i ∈ {1,…, m} 𝖴𝖤j, j ∈ ℛi

γj = 𝖲𝗈𝖿𝗍𝗆𝖺𝗑ℛi (bT
γ sj) =

exp (bγ
Tsj)

∑k∈ℛi
exp (bγ

Tsk)
.

GNN Outputs Drive Resource Allocation Decisions
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• GNNs exploit the regularities of the graph, therefore leading to the scalability of GNN-based policies. 

• GNNs transfer across different scales: GNNs trained on small graphs can be executed on larger graphs. 

yl
v = Ψl (yl−1

v , w(v, v), {yl−1
u , w(u, v)}u∈𝒱\{v}:(u,v)∈ℰ

; θl), ∀l ∈ {1,2,…, L} .

GNNs Are Scalable And Transferable

16



Scalability of Power Control Policies ( )m = n
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Scalability with the Number of APs ( )n = 40
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Optimal Slack Values Reflect Network Load
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Constraints are relaxed further as the transmission resources become more limited.



Slack Grows for Users in Unfavorable Conditions

20

Users with low signal-to-noise ratio (SNR) and/or high interference-to-noise ratio (INR) levels have higher slacks.



Transferability of GNN-Based Policies
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• We considered the problem of allocating limited resources in wireless networks under requirements/constraints. 

• Under adverse, extreme conditions, enforcing such requirements may lead to catastrophic failure. 

• We introduced the notion of resilience, which adapts the requirements just enough to make them feasible. 

• GNN-based resilient user selection and power control policies outperform baselines in multi-user wireless networks. 

• The notion of resilience is also applicable to other areas, such as federated learning and reinforcement learning.

Concluding Remarks
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