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▪ Benchmarked CNN vs. Normalized Adaptive Matched Filter (gold standard of model-based approaches)

▪ No mismatches in radar scenario: CNN has 10-fold gain in localization accuracy over NAMF (45 m to 5 m)

▪ Showed that CNN can be made robust to mismatches (perturbations) in radar scenarios 

▪ Validated the efficacy of chordal distance as a task affinity measure to benchmark CNN gain over NAMF

▪ Developed a transfer learning (TL) approach to make CNN robust to mismatches in the radar scenario

▪ Using transfer learning, the CNN recovers up to a 4-fold gain over NAMF (45 m to 11 m)

▪ Began construction of Benchmarking Radar STAP Dataset (ImageNet of radar STAP) using RFView®

▪ 10,000 total scenarios in dataset, each consisting of 10,000 clutter + noise realizations

▪ LBG algorithm finds 100 representative scenarios (pre-trained CNN provided) from 10,000 total scenarios

▪ To use dataset: User selects pre-trained CNN from scenario with 

minimal task affinity measure with respect to their own scenario

▪ User can fine-tune this CNN via transfer learning w/ few samples

Summary of Recent Work and Benchmarking Radar STAP Dataset

Radar platform displaced in each cardinal & intermediate direction

• Pairwise Agreement between chordal distance and CNN Gain
• Transfer Learning (TL) with few samples recovers CNN Gain

S. Venkatasubramanian, S. Gogineni, B. Kang, A. Pezeshki, M. Rangaswamy, and V. Tarokh, “Subspace 

Perturbation Analysis for Data-Driven Radar Target Localization,” IEEE Radar Conference, pp. 1–5, 2023
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Target Localization

•  Target Localization is crucial to the design of modern radar systems
•  Foundational to surveillance, navigation, and military operations
•  Defined post radar STAP detection

Limitations of Radar STAP Detection & Localization:

•  Possible target/clutter subspace overlap
•  Projecting out clutter removes target response [1]

•  Clutter interference unknown a priori
•  Clutter covariance estimated with limited data [2]
•  Lends to suboptimal detection (adaptive case)
•  Weakens optimality claims regarding target localization
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Emergence of Big Data in Radar

• Follows from recent emergence of big data in computer vision
• Several publicly available databases for natural images:

• CIFAR-10/100 [3], COCO [4], ImageNet [5]
• Allow for the training and testing of computer vision algorithms

Big Data in Radar STAP Applications:

• Detailed satellite topographic maps are now readily available.

• Can we use the side-information provided by this data – instead of idealized 
mathematical models – to improve radar STAP performance? 

• Need simulators that can use the data for modeling – i.e., RFView®
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RFView® Digital Twin Software

•  Developed by ISL Inc.
•  Splatter Clutter and Target Signal engine has been in commercial use since 1989
•  Supports efficient real-time instantiation of RF environments1

•  Extensively validated against measured datasets

•  User-defined simulation scenarios
•  Specify parameters and targets + land cover data provided

•  High-fidelity data generation [6]
•  Simulate radar return & generate target, clutter, and noise data

1  Training the regression convolutional neural networks for our analysis requires massive noise-free 
datasets, which we generate by rapidly instantiating dynamically varying environments in RFView®

7



8

•  Signal model derived from radar STAP detection problem

• Hypothesis testing on radar return (matched filtered to range bin 𝜌):

𝐻0 ∶ 𝐙𝜌 = ത𝐂𝜌 + ഥ𝐍𝜌  𝐻1 ∶ 𝐘𝜌 = 𝐗𝜌 + 𝐂𝜌 + 𝐍𝜌

𝐙𝜌 and 𝐘𝜌 consist of 𝐾 realizations of the radar return and clutter-plus-noise data
ത𝐂𝜌, 𝐂𝜌 are unique and consist of 𝐾 realizations of the clutter data
ഥ𝐍𝜌, 𝐍𝜌 are unique and consist of 𝐾 realizations of the noise data 

𝐚𝜌 𝜃, 𝜙∗  is the steering vector associated w/ coordinates 𝑟𝜌, 𝜃, 𝜙∗

Notation: 𝒓𝝆 = range (of range bin 𝜌),    𝜽 = azimuth,    𝝓∗ = elevation of target (known)

Heatmap Tensor Generation – Signal Model
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Heatmap Tensor Generation
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• The NAMF Test Statistic, Γ𝜌 𝜃 ∈ ℝ+, 
for coordinates 𝑟𝜌, 𝜃, 𝜙∗  is given by:

Heatmap Tensor Generation: 
•  For each target configuration (𝑁 total):

•  For each range bin (𝜌) from constrained area:
•  Sweep across azimuth with step size Δ𝜃

•  Record NAMF test statistic, Γ𝜌 𝜃

Result:  For Δ𝑟, Δ𝜃 = 30 m, 0.4°

•  2D Heatmap Tensor of size 5 × 26

Γ𝜌 𝜃 =
෤𝐚𝜌 𝜃,𝜙∗ 𝐻𝚺−1 ෨𝐘𝜌 2

2

෤𝐚𝜌 𝜃,𝜙∗ 𝐻𝚺−1 ෤𝐚𝜌 𝜃,𝜙∗ diag ෨𝐘𝜌
𝑯 ෨𝐘𝜌

 

where:   Σ = 𝐙𝜌𝐙𝜌
𝐻 /K
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• Comparing Regression CNN with traditional method (NAMF):
• Metric: Euclidean distance (averaged across test dataset)

Regression CNN: 𝐸𝑟𝑟CNN
• Estimated target location vs. 

ground truth target location

Traditional Method: 𝐸𝑟𝑟NAMF
• Midpoint of cell with peak test statistic in each heatmap tensor 

vs. ground truth target location

Average Euclidean Distance Metric



11

Matched Case RFView® Example Scenario (Previous Result)
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Regression CNN vs. Traditional Method (Previous Result)

0.9𝑁 training examples, 0.1𝑁 test examples, SCNR = 20 dB
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Problem Statement

• Detection statistics observe suboptimal performance when the clutter covariance 
matrix is estimated from limited data (radar returns)

• Diminishes target localization accuracy post radar STAP detection

Data-Driven Approach:

• Can we use deep learning to improve target localization performance?

•  Traditional approach: Estimating the peak location from a detection test statistic

• Baseline CNN [7] achieves significant gains over traditional approach in matched 
settings. Can CNN performance across mismatched settings be predetermined?

• Perform a Subspace Perturbation Analysis to benchmark CNN performance

•  Consider robust mismatched case scenario in RFView® for further evaluation
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•  Airborne radar platform system flying over coastal Southern California
• We consider a single-channel transmitter and an 𝐿 = 16-channel receiver

•  𝐷 = 2 dimensions exploited for processing: Range, 𝒓, and Azimuth, 𝜽

•  Each radar return is produced using Λ = 1 transmitted pulses

• RFView® aggregates topography & radar parameters to simulate radar return
• Targets are stationary (𝑣 = 0 m/s) and target elevation, 𝝓∗, is known beforehand

Mismatched RFView® Example Scenarios
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Mismatched RFView® Example Scenarios



Mismatched RFView® Example Scenarios
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Original Platform Location Instance (O):

▪ Target randomly placed within red constrained area
▪ RCS randomly chosen from uniform distribution w/ set mean (range = 10 dBsm)

▪ Generate 𝑲 = 𝟏𝟎𝟎 independent radar returns using RFView (𝐿 = 16 channels, Λ = 1 pulses)
and transform into heatmap tensor via the NAMF test statistic

▪ Repeat 𝑵 times to obtain 𝑵 heatmap tensors (examples in our dataset).

▪ Heatmap tensor = 2D representation of red constrained area

▪  Approximate constrained area specifications:
▪ Contains 𝜅 range bins, where 𝜅 = Depth Parameter

▪ Default grid resolution: (Δ𝑟, Δ𝜃), where Δ𝑟 = Chip Size



Mismatched RFView® Example Scenarios

18

Displaced Platform Location Instances (D):

▪ (D) ∈ {1 km North (N), 1 km Northwest (NW), 1 km West (W), 1 km Southwest (SW), 
1 km South (S), 1 km Southeast (SE), 1 km East (E), 1 km Northeast (NE)}:

▪  Generate 0.1𝑵 heatmap tensors for each (D)
▪ Repeat the following 0.1𝑁 times:

▪ Target randomly placed within orange constrained area

▪ RCS randomly chosen from uniform distribution w/ set mean (range = 10 dBsm)

▪ Generate 𝑲 = 𝟏𝟎𝟎 independent radar returns using RFView (𝐿 = 16, Λ = 1) 
and transform into heatmap tensor via the NAMF test statistic

▪ Heatmap tensor = 2D representation of orange constrained area

Notation:   𝚲 = number of pulses, 𝑳 = number of channels, 𝑲 = number of realizations



Mismatched RFView® Example Scenarios
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Displaced Platform Location Instance (D):

▪  Approximate constrained area specifications:
▪ Contains 𝜅 range bins, default grid resolution: (Δ𝑟, Δ𝜃)



Proof-of-concept – Subspace Perturbation Analysis
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▪ Goal: Measure similarity between clutter-plus-noise (clutter)
subspaces of (𝐎) and 𝐃 ∈ 𝐍, 𝐍𝐖, 𝐖, 𝐒𝐖, 𝐒, 𝐒𝐄, 𝐄, 𝐍𝐄

▪ Consider clutter-plus-noise data matrices of (𝐎) & 𝐃 :
▪ 𝐙𝜌

𝐎
= ത𝐂𝜌

𝐎
+ ഥ𝐍𝜌

𝐎
∈ ℂ Λ⋅𝐿 ×𝐾   𝐙𝜌

𝐃
= ത𝐂𝜌

𝐃
+ ഥ𝐍𝜌

𝐃
∈ ℂ Λ⋅𝐿 ×𝐾

▪ The chordal distance between ത𝐂𝜌
𝐎  and ത𝐂𝜌

𝐃  is denoted: መ𝐝𝐜𝐡𝐨𝐫𝐝𝐚𝐥 
▪ መ𝐝𝐜𝐡𝐨𝐫𝐝𝐚𝐥 measures the similarity between 𝐎  and 𝐃

▪ Derived መ𝐝𝐜𝐡𝐨𝐫𝐝𝐚𝐥 between ത𝐂𝜌
𝐎  and ത𝐂𝜌

𝐃
 for Λ = 1, 𝐿 = 16, 𝐾 = 100:

 

 

Notation:   𝚲 = number of pulses, 𝑳 = number of channels, 𝑲 = number of realizations
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Regression CNN Framework
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Regression CNN for target localization (Λ = 1, 𝐿 = 16, 𝐾 = 100)

Original Platform Location Instance 𝐎 :
▪ The original platform location instance dataset has:

𝑁 = 9 × 104 training examples

Displaced Platform Location Instances 𝐃 ∈ 𝐍, 𝐍𝐖, 𝐖, 𝐒𝐖, 𝐒, 𝐒𝐄, 𝐄, 𝐍𝐄  :
▪ Each displaced platform location instance has a dataset with  0.1𝑁 test examples

▪ Fit Regression CNN with training dataset
▪ Learn target locations 𝑟, 𝜃 → 𝑥, 𝑦  from the 0.9𝑁 heatmap tensors

▪ Evaluate Regression CNN on test datasets
▪ Estimate target location Ƹ𝑟, ෠𝜃 → ො𝑥, ො𝑦  for each of the 0.1𝑁 heatmap tensors



Regression CNN Framework – Baseline CNN
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▪ Used for evaluations with default grid resolution: Δ𝑟, Δ𝜃 = 30 m, 0.4°

Tensor dimensions = 𝟓 × 𝟐𝟔      Output = ෝ𝒙, ෝ𝒚  coordinates of target

Inference Time = 2.25 × 10−3 s 1      No. of Trainable Parameters = 13,374

1  All network inference times were measured using an NVIDIA GeForce RTX 3090 GPU
and averaged across all examples (heatmap tensors) in the respective dataset.



Mismatched Case Empirical Results
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Evaluating Regression CNN Framework for Variable SCNR (Baseline CNN)



Mismatched Case Empirical Results
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▪ Recall chordal distance ( መ𝐝𝐜𝐡𝐨𝐫𝐝𝐚𝐥) between 𝐎  and 𝐃 : 
▪ For mean output SCNR above the SCNR-independent breakdown threshold of 

the NAMF test statistic (𝒄 = −𝟒 𝐝𝐁) [8], we expect the following ordering of 
the displaced platform location instances (in terms of localization accuracy):

▪ 𝐸𝑟𝑟CNN for 𝐍 , 𝐍𝐖 , 𝐖  will see the greatest improvement over 𝐸𝑟𝑟NAMF

▪ 𝐸𝑟𝑟CNN for 𝐒𝐖 , 𝐍𝐄  will see a diminished improvement over 𝐸𝑟𝑟NAMF

▪ 𝐸𝑟𝑟CNN for 𝐒 , 𝐄 , 𝐒𝐄  will see the lowest improvement over 𝐸𝑟𝑟NAMF

▪ For mean output SCNR = 20 dB, the gain afforded by the CNN is:

Pairwise Agreement



Mismatched Case Empirical Results – Transfer Learning
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▪ We observe that the gains afforded by our regression CNN framework are 
diminished across the displaced platform location instances

▪ How can we improve this diminished gain? A: Transfer Learning.

Transfer Learning
▪ Applying model trained on original platform location instance 𝐎  to displaced 

platform location instances 𝐃 ∈ 𝐍, 𝐍𝐖, 𝐖, 𝐒𝐖, 𝐒, 𝐒𝐄, 𝐄, 𝐍𝐄 :

▪ Instead of generating 9 × 104 new heatmap tensors for each displaced platform location 

instance to re-train the network from scratch, what if we fine-tuned the pre-trained CNN  

using only 64 new examples for each displaced platform location instance? 



Mismatched Case Empirical Results – Transfer Learning
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Augmenting Regression CNN Framework with Transfer Learning (Baseline CNN)



Mismatched Case Empirical Results
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▪ For mean output SCNR = 20 dB, the gain afforded by the CNN after 
transfer learning is (Gain [TL]):
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Conclusion

▪ Benchmarking target localization performance of neural networks across 
mismatched scenarios has been an open problem

▪ In this work: Benchmarked target localization performance of regression CNN 
framework by performing a subspace perturbation analysis

▪ Chordal distance metric presents a pairwise agreement with the gains afforded 
by regression CNN framework over more traditional approach

▪ To ameliorate the reduced target localization accuracies observed by our CNN

(for large መ𝐝𝐜𝐡𝐨𝐫𝐝𝐚𝐥), we augmented our approach with transfer learning

▪ 3-fold gain is now observed across all displaced platform location instances

Future Directions
▪ Complex-Valued Siamese CNN for target localization in development

▪ Benchmarking radar STAP database in development
30
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Addendum – Doppler Processing Example

▪ Previous papers: Deep learning improves target localization performance

▪  More classical approach: Estimating the peak location from a detection test statistic

▪ Baseline CNN [7] achieves significant gains over more classical approach in matched settings. 
Can we extend this to the Doppler case? (Position & Velocity Estimation)

▪ Need to revisit heatmap tensor generation procedure introduced in [7]

▪  Consider Doppler example scenario in RFView® for further evaluation

Doppler Example Scenario:

▪  𝐷 = 3 dimensions exploited for processing: Range, 𝒓, Azimuth, 𝜽, Velocity, 𝒗

▪  Each radar return is produced using Λ transmitted pulses

▪  RFView® aggregates topography & radar parameters to simulate radar return
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Addendum – Doppler Example Scenario
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▪  Consider a single airborne radar platform within the following scene:



Addendum – Doppler Example Scenario

▪  Moving target randomly placed within red constrained area
▪ RCS randomly chosen from uniform distribution w/ set mean (range = 10 dBsm)

▪ Generate 𝑲 independent radar returns 𝐘𝝆 ∈ ℝΛ×𝐿×𝐾  using RFView 
(Λ transmitted pulses, 𝐿-channel receiver) and transform into heatmap tensor

▪ Repeat 𝑵 = 𝟗 × 𝟏𝟎𝟒 times to obtain 𝑵 heatmap tensors (examples in our dataset)
▪ Heatmap tensor = 3D representation of constrained area

▪  Approximate constrained area specifications: (𝜅 = 5 range bins)
▪  Default grid step size: Δ𝑟, Δ𝜃, Δ𝑣 = (30 m, 0.4°, 0.5 m/s)
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Addendum – Doppler Example Scenario

Heatmap Tensor Generation: 

▪ For each example in our dataset (𝑁 = 9 × 104 total):
▪ For each range bin (𝑟 = 98, … , 102) from constrained area:

▪ Sweep across azimuth and velocity with step size Δ𝜃, Δ𝑣

▪Record NAMF Test Statistic, Γ𝜌(𝜃, 𝑣), at each location

Result: 

▪ Heatmap Tensor of size 
 5 × 26 × 31
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Addendum – Doppler CNN Framework

Doppler CNN for target position and velocity estimation (Λ = 4, 𝐿 = 16, 𝐾 = 100)

▪ Dataset –– 𝑵 = 𝟗 × 𝟏𝟎𝟒 heatmap tensors, produced using NAMF test statistic

▪ Randomly partition 𝑁 examples such that we have:  

 𝑁𝑡𝑟𝑎𝑖𝑛 = 0.9𝑁 training examples  𝑁𝑒𝑣𝑎𝑙 =  0.1𝑁 validation examples

▪ Fit Regression CNN with training dataset
▪ Learn target locations 𝑟∗, 𝜃∗, 𝑣∗ → 𝑥∗, 𝑦∗, 𝑣∗  from the 0.9𝑁 heatmap tensors

▪ Evaluate Regression CNN on validation dataset
▪ Estimate target location Ƹ𝑟, መ𝜃, ො𝑣 → ො𝑥, ො𝑦, ො𝑣  for each of the 0.1𝑁 heatmap tensors
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Addendum – Doppler CNN Architecture

▪ Used for evaluations with default grid step size: Δ𝑟, Δ𝜃, Δ𝑣 = 30 m, 0.4°, 0.5 m/s

Tensor dimensions = 𝟓 × 𝟐𝟔 × 𝟑𝟏 Output = ො𝑥, ො𝑦, ො𝑣  coordinates of target

Inference Time = 4.35 × 10−3 s 1      No. of Trainable Parameters = 143,299
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Addendum – Average Euclidean Distance Metric

▪ Comparing Doppler CNN with traditional methods (NAMF):
▪ Metric: Euclidean distance (averaged across validation dataset)

▪ Doppler CNN:
▪ Estimated target attributes vs. ground truth target attributes

▪ Traditional Method:
▪ Midpoint of cell with peak test statistic in each heatmap tensor vs. 

ground truth target attributes
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Addendum – Doppler Example Empirical Results

Doppler CNN 𝐸𝑟𝑟𝐶𝑁𝑁 & 𝐸𝑟𝑟𝐶𝑁𝑁 𝑣  vs. NAMF Test Statistic 𝐸𝑟𝑟𝑁𝐴𝑀𝐹  & 𝐸𝑟𝑟𝑁𝐴𝑀𝐹 𝑣
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Summary of Accomplishments
▪ Benchmarked CNN w.r.t Normalized Adaptive Matched Filter (gold standard of model-based approaches)

▪ No mismatches in radar scenario: CNN yields 10-fold improvement in localization accuracy over NAMF, 
improving localization accuracy (Euclidean distance) from 45 m to 4.5 m (range resolution = 30 m)

▪ Showed that CNN can be made robust to mismatches between the train and test data in radar scenarios 
(e.g., sensitivity of target localization by changing platform location and clutter response)

▪ Proof-of-concept: Displace the radar scenario by 1 km in each cardinal and intermediate direction, which 
results in a markedly different clutter response (highly variable terrain)

▪ Showed that we can use chordal distance as a task affinity measure (between original radar scenario 
and displaced scenarios) to help benchmark CNN gain over NAMF (yields pairwise agreement)

▪ Developed a Transfer Learning approach to robustify CNN to mismatches in the radar scenario, with 
only small sample overhead for training (only 64 new samples instead of 100,000 training samples)

▪ Using transfer learning, the CNN recovers up to a 4-fold gain over NAMF (10 m vs. 40 m)

▪ Outlined and began construction of our benchmarking radar STAP dataset (stored in tree data structure)

▪ 10,000 total scenarios in dataset, each consisting of 10,000 clutter + noise realizations (clutter response)

▪ LBG algorithm determines 100 representative scenarios from 10,000 total scenarios (using Energy distance)

▪ For each representative scenario, we provide 100,000 radar data cubes (target + clutter + noise data), 
which the user can use to train their own neural network. We also provide our pre-trained CNN.

▪ To use the dataset, the user stores in memory the CNN that has been trained on the representative 
scenario with the minimal task affinity measure (Energy distance) w.r.t their own scenario.

▪ User can fine-tune CNN via. transfer learning by generating a few new samples from their own scenario
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