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Reinforcement learning (RL)

In RL, an agent learns optimal decisions by interacting with an environment.

Real-world applications: autonomous driving, game, clinical trials, ...



Challenges: Data and computation

® Sample efficiency: Collecting data samples might be expensive or
time-consuming
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Challenges: Data and computation

® Sample efficiency: Collecting data samples might be expensive or
time-consuming
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® Computational efficiency: Training RL algorithms might take a long
time
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many CPUs / GPUs / TPUs + computing hours



RL meets federated learning

Can we harness the power of federated learning?

Parameter server
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Agent 1 Agent 2 «  Agentk - AgentK

Federated reinforcement learning enables multiple agents to
collaboratively learn a global policy without sharing datasets.
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This paper

Understand the sample efficiency of Q-learning in federated settings. J

Linear speedup:

Can we achieve linear speedup when learning with multiple agents?

Communication efficiency:

Can we perform multiple local updates to save communication?

Taming heterogeneity:

How to combine heterogeneous local updates to accelerate learning?



Backgrounds:
Markov decision processes and Q-learning



Markov decision process (MDP)
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Markov decision process (MDP)
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Markov decision process (MDP)

action

environment [« — =

! next state
St41 ™~ P('|5taat)

® S: state space e A: action space

r(s,a) € [0, 1]: immediate reward

m(+|s): policy (or action selection rule)

P(-|s,a): transition probabilities

S

[TTeé




Value function
T3 T4
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Value function
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Value function of policy 7:

VseS: V™(s):=E
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Q-function of policy

V(s,a) eSxA: Q7(s,a):=E
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t=0

® ~ € [0,1) is the discount factor; ﬁ is effective horizon

® Expectation is w.r.t. the sampled trajectory under 7



Searching for the optimal policy

T —

Dynamic Programming
Learning and Optimal Control

aniresssero on

Goal: find the optimal policy 7* that maximize V7 (s)

*

® optimal value / Q function: V* := VT Q* =QT

® optimal policy 7*(s) = argmax,c 4 @*(s,a)



Bellman’s optimality principle

Bellman operator

T(@)(s,a):= r(s,a) +7v

immediate reward

® one-step look-ahead
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Bellman’s optimality principle

Bellman operator

T@s.0)= r(sa) +7 B |maxQ(s,a)]
—— s'~P(-|s,a) La’€EA
immediate reward —

next state's value

® one-step look-ahead

Bellman equation: Q* is unique solution to
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~-contraction of Bellman operator: \;
7(Q1) — T(Q2)lloo <YIQ1 — Q2|0 Richard Bellman
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Asynchronous Q-learning

Q-learning: Stochastic approximation for solving Bellman equation.
With a transition sample (s, a¢, 7, S¢+1), update Q; as

Qi1(5t,a) = (1 —1)Q¢(s¢,a¢) + 1 (re + 7 max Q¢(s¢41,a")), t=>0

T (Q+)

n: step size
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Asynchronous Q-learning

Q-learning: Stochastic approximation for solving Bellman equation.
With a transition sample (s, a¢, 7, S¢+1), update Q; as

Qir1(s¢,a1) = (1 =1)Qe(s¢,a) +n (re + v max Q¢(s¢41,a")), t=>0

n: step size

Asynchronous setting: Update single entry (s, a;) along a Markovian

trajectory generated by behavior policy m,
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Q1
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How to federate Q-learning?



Federated asynchronous Q-learning with local updates

Parameter server

® Local update (agent):
Performs 7 rounds of local
Q-learning updates.

Q1 (51, a1) — (1=m)QF (51, ar)+nTi(QF) (se, ar)
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Local trajectories might be
heterogeneous!
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Federated asynchronous Q-learning with local updates

® Local update (agent):
Performs 7 rounds of local
Q-learning updates.

QF i1 (st a0) — (1=0)QF (50, a)+0Ti(QF) (st ar)

® Periodic averaging (server):
Averages the local Q-tables.

1 K
_ k
Q=g 2k

Parameter server

@ |

mE -

-

Agent 1

1
(s

Agent 2
2
Th

- Agentk

—k
Th

- AgentK

K
T

13



Federated asynchronous Q-learning with local updates

® Local update (agent):
Performs 7 rounds of local
Q-learning updates.

QF i1 (st a0) — (1=0)QF (50, a)+0Ti(QF) (st ar)

® Periodic averaging (server):

Parameter server

Averages the local Q-tables.
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Can we achieve faster convergence with heterogeneous local updates? )
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Sample complexity of federated Q-learning



Prior art

sample
complexity
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Our theorem

Theorem (this work)

For sufficiently small e > 0, if T is not too large, federated asynchronous
Q-learning yields ||Q — Q*||co < € with sample complexity at most

~ Chet
o ([(ﬂmin(1 - 7)5€2>

ignoring the burn-in cost that depends on the mixing times, where

k
fhmin = min 1l (s, a) and Chet := K max Hy (5, 9)
k N—_——

Kio

k k

R — 0D e My (55 @)
stationary distribution

® 1 < Chet < % measures the heterogeneity of local behavior
policies.

® Chet = 1 when the local behavior policies are similar.
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Near-optimal linear

sample

complexity“

1
ﬂmin(l —= 1’)‘152

Linear speedup with near-optimal parameter dependencies!

speedup
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Curse of heterogeneity?

® Full coverage: The insufficient coverage of just one agent can
significantly slow down the convergence (i.e. fimin = 0)
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Curse of heterogeneity?

® Full coverage: The insufficient coverage of just one agent can
significantly slow down the convergence (i.e. fimin = 0)

® Curse of heterogeneity: Performance degenerates when local
behavior policies are heterogeneous (i.e. Chet > 1).
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Is it possible to alleviate these limitations?
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How to federate Q-learning

without the curse of heterogeneity?



Importance averaging

Key observation: Not all updates are of same quality due to limited
visits induced by the behavior policy.
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Importance averaging

Key observation: Not all updates are of same quality due to limited
visits induced by the behavior policy.

higher weights
e —
PER) -]
+ =i = =
PHR 2 U/

Importance averaging: Averages the local Q-values assigning higher
weights on more frequently updated local values via

K
a) = Z af(s,a)Q¥ (s, a),
k=1

where
e (- p)~Nera(sa)

S (L) V)

number of visits

Ntkff,t (S’ CL) =

in the sync period °
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Sample complexity of federated Q-learning

with importance averaging



Our theorem

Theorem (this work)

For sufficiently small € > 0, if T is not too large, federated asynchronous
Q-learning with importance averaging yields ||Q — Q*||cc < € with sample

complexity at most
~ 1
(Tt —r2)
[(,uavg;(1 - 7)562

ignoring the burn-in cost that depends on the mixing times, where

K

1
Havg = IE,lan ? ;U’g(sva)~

® No performance degeneration due to heterogeneity (Chet).

® Near-optimal linear speedup.
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Equal averaging versus importance averaging

sample
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Partial-coverage

Partial coverage is enough as long as agents collectively cover the entire
state-action space, i.e.,

——

=

No longer require full coverage of every individual agent!
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Blessing of heterogeneity

sample
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vercome the insufficient coverage of individual agents
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by exploiting heterogeneity! J
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Final remarks

Parameter server

Agent 1 Agent 2 - Agentk - AgentK

26



Thanks!

® The Blessing of Heterogeneity in Federated Q-Learning: Linear Speedup and
Beyond, ICML 2023. (arXiv: 2305.10697)
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