Jiin Woo

Carnegie Mellon University

August 2023

Gauri Joshi Yuejie Chi
CMU CcMU

Reinforcement learning (RL)

In RL, an agent learns optimal decisions by interacting with an environment.

Real-world applications: autonomous driving, game, clinical trials, ...

Challenges: Data and computation

® Sample efficiency: Collecting data samples might be expensive or
time-consuming

"é’ -~

To.aet

1=

clinical trials autonomous driving

Challenges: Data and computation

® Sample efficiency: Collecting data samples might be expensive or
time-consuming

"’? | ..-H,-_ u
ThR sy

. Y

clinical trials autonomous driving

® Computational efficiency: Training RL algorithms might take a long
time

e »

many CPUs / GPUs / TPUs + computing hours

RL meets federated learning

Can we harness the power of federated learning?

Parameter server

[

@l

@ | al

Agent 1 Agent 2 « Agentk - AgentK

Federated reinforcement learning enables multiple agents to
collaboratively learn a global policy without sharing datasets.

J

This paper

Understand the sample efficiency of Q-learning in federated settings. J

Linear speedup:

Can we achieve linear speedup when learning with multiple agents?

Communication efficiency:

Can we perform multiple local updates to save communication?

Taming heterogeneity:

How to combine heterogeneous local updates to accelerate learning?

Backgrounds:
Markov decision processes and Q-learning

Markov decision process (MDP)

state s,

reward
it = T(Sta ag

F S 8

! next state
St41 ™~ P('|5tal’1t)

® S: state space

action

environment [« — =

e A: action space

S

[TTeé

Markov decision process (MDP)

action
state sy

reward
it = r(st, at |

environment [« — =

F S 8

! next state
St41 ™~ P('|5tal’1t)

® S: state space e A: action space

® r(s,a) € [0,1]: immediate reward

S

[TTeé

Markov decision process (MDP)

action
state s; ap ~ ?‘T('|8t)

reward
Ty = (8¢, a4 |

environment [« — =

F S 8

! next state
St41 ™~ P('|5tal’1t)

e S: state space e A: action space
® r(s,a) € [0,1]: immediate reward

e 7(-]s): policy (or action selection rule)

S

[TTeé

Markov decision process (MDP)

action

environment [« — =

! next state
St41 ™~ P('|5taat)

® S: state space e A: action space

r(s,a) € [0, 1]: immediate reward

m(+|s): policy (or action selection rule)

P(-|s,a): transition probabilities

S

[TTeé

Value function
T3 T4

action
state s i e
B e U R
reward |]:> S0 ‘I 81 ‘I 8 — 83 ‘l 54 ‘l
- Ll T2 4 Wr
~ ap ai i ag a4
sé1 ~ Plse,an)
Value function of policy 7:
o0
Vs e S: V™(s):=E E Wtrt|50:s
t=0

Q-function of policy
(o)
Z’ytr(st,at) |so=s.00=0a

t=0

V(s,a) eSxA: Q7(s,a):=E

|

Value function

state s ap ~ (-|8s)
e) = moonoomoomom

reward |]:> 80 ‘I Y .‘I D) ‘I 83 l &4 l
1Ty = (s, a ¥ i ; H H ¥ 7

- o iy o e
-1 g a ay dy a4

S |
e

-"tE.—l ~ Plse,ai)

Value function of policy 7:

VseS: V™(s):=E

(oo}

thn | S0 = s]
t=0

Q-function of policy

V(s,a) eSxA: Q7(s,a):=E

(e}
Z'ytr(st,at) ‘ S0 = 5,00 = (l]

t=0

® ~ € [0,1) is the discount factor; ﬁ is effective horizon

® Expectation is w.r.t. the sampled trajectory under 7

Searching for the optimal policy

T —

Dynamic Programming
Learning and Optimal Control

aniresssero on

Goal: find the optimal policy 7* that maximize V7 (s)

*

® optimal value / Q function: V* := VT Q* =QT

® optimal policy 7*(s) = argmax,c 4 @*(s,a)

Bellman’s optimality principle

Bellman operator

T(@)(s,a):= r(s,a) +7v

immediate reward

® one-step look-ahead

E
s'~P(:|s,a)

|

! /
max Q(s', a’)

next state's value

10

Bellman’s optimality principle

Bellman operator

T@s.0)= r(sa) +7 B |maxQ(s,a)]
—— s'~P(-|s,a) La’€EA
immediate reward —

next state's value

® one-step look-ahead

Bellman equation: Q* is unique solution to

f;/!

T@")=Q"
~-contraction of Bellman operator: \;
7(Q1) — T(Q2)lloo <YIQ1 — Q2|0 Richard Bellman

10

Asynchronous Q-learning

Q-learning: Stochastic approximation for solving Bellman equation.
With a transition sample (s, a¢, 7, S¢+1), update Q; as

Qi1(5t,a) = (1 —1)Q¢(s¢,a¢) + 1 (re + 7 max Q¢(s¢41,a")), t=>0

T (Q+)

n: step size

11

Asynchronous Q-learning

Q-learning: Stochastic approximation for solving Bellman equation.
With a transition sample (s, a¢, 7, S¢+1), update Q; as

Qir1(s¢,a1) = (1 =1)Qe(s¢,a) +n (re + v max Q¢(s¢41,a")), t=>0

n: step size

Asynchronous setting: Update single entry (s, a;) along a Markovian

trajectory generated by behavior policy m,

To 1 2 73 T4
Lo Lol lal
S A L
ag a1 az a3y ay
T T T
To(1s0) m(-|s1) mo(-|s2) mo(-lss) mu(-[sa)

Q1

11

How to federate Q-learning?

Federated asynchronous Q-learning with local updates

Parameter server

® Local update (agent):
Performs 7 rounds of local
Q-learning updates.

Q1 (51, a1) — (1=m)QF (51, ar)+nTi(QF) (se, ar)

@ el
S | - |
- |] |
Agent 1 Agent 2 -« Agentk - AgentK

K

T

1 2 —k
Ty T Ty

Local trajectories might be
heterogeneous!

13

Federated asynchronous Q-learning with local updates

® Local update (agent):
Performs 7 rounds of local
Q-learning updates.

QF i1 (st a0) — (1=0)QF (50, a)+0Ti(QF) (st ar)

® Periodic averaging (server):
Averages the local Q-tables.

1 K
_ k
Q=g 2k

Parameter server

@ |

mE -

-

Agent 1

1
(s

Agent 2
2
Th

- Agentk

—k
Th

- AgentK

K
T

13

Federated asynchronous Q-learning with local updates

® Local update (agent):
Performs 7 rounds of local
Q-learning updates.

QF i1 (st a0) — (1=0)QF (50, a)+0Ti(QF) (st ar)

® Periodic averaging (server):

Parameter server

Averages the local Q-tables.

@ |

mE -

-

1 K
Qt = ? kZ_l Qf Agent 1

1
(s

Agent 2
")
Th

- Agentk

—k
Th

- AgentK

K
T

Can we achieve faster convergence with heterogeneous local updates?)

13

Sample complexity of federated Q-learning

Prior art

sample
complexity

1

Hemin(1 —7)%e? |

st

Kl?(l —)%

) single-agent
Q-learning

15

Our theorem

Theorem (this work)

For sufficiently small e > 0, if T is not too large, federated asynchronous
Q-learning yields ||Q — Q*||co < € with sample complexity at most

~ Chet
o ([(ﬂmin(1 - 7)5€2>

ignoring the burn-in cost that depends on the mixing times, where

k
fhmin = min 1l (s, a) and Chet := K max Hy (5, 9)
k N—_——

Kio

k k

R — 0D e My (55 @)
stationary distribution

® 1 < Chet < % measures the heterogeneity of local behavior
policies.

® Chet = 1 when the local behavior policies are similar.

16

Near-optimal linear

sample

complexity“

1
ﬂmin(l —= 1’)‘152

Linear speedup with near-optimal parameter dependencies!

speedup
s
Kp?“(l 7)%2
'v}.
&
,,,,,,,,,,,,,,,,, o
,,,,,,,,,,,,,,, B e het
O‘:P - ///’K omin (1 — 7)%€2
5 single-agent
Q-learning
K=1 1/K

17

Curse of heterogeneity?

® Full coverage: The insufficient coverage of just one agent can
significantly slow down the convergence (i.e. fimin = 0)

o \

Curse of heterogeneity?

® Full coverage: The insufficient coverage of just one agent can
significantly slow down the convergence (i.e. fimin = 0)

® Curse of heterogeneity: Performance degenerates when local
behavior policies are heterogeneous (i.e. Chet > 1).

) |
L/

{‘\gf - g }!

Is it possible to alleviate these limitations?

18

How to federate Q-learning

without the curse of heterogeneity?

Importance averaging

Key observation: Not all updates are of same quality due to limited
visits induced by the behavior policy.

1

LA
+

!

1
IQ-
1
L-

20

Importance averaging

Key observation: Not all updates are of same quality due to limited
visits induced by the behavior policy.

higher weights
e —
PER) -]
+ =i = =
PHR 2 U/

Importance averaging: Averages the local Q-values assigning higher
weights on more frequently updated local values via

K
a) = Z af(s,a)Q¥ (s, a),
k=1

where
e (- p)~Nera(sa)

S (L) V)

number of visits

Ntkff,t (S’ CL) =

in the sync period °

20

Sample complexity of federated Q-learning

with importance averaging

Our theorem

Theorem (this work)

For sufficiently small € > 0, if T is not too large, federated asynchronous
Q-learning with importance averaging yields ||Q — Q*||cc < € with sample

complexity at most
~ 1
(Tt —r2)
[(,uavg;(1 - 7)562

ignoring the burn-in cost that depends on the mixing times, where

K

1
Havg = IE,lan ? ;U’g(sva)~

® No performance degeneration due to heterogeneity (Chet).

® Near-optimal linear speedup.

22

Equal averaging versus importance averaging

sample

. A
complexity

/

Chl.“

K ptmin(1 — 7)%€2

é‘i’gf% 1 7
3 K piag(1— 7)%2
\«gjg:;%
K=1 1K
Faster convergence: fiavg > [imin)

23

Partial-coverage

Partial coverage is enough as long as agents collectively cover the entire
state-action space, i.e.,

——

=

No longer require full coverage of every individual agent!

24

Blessing of heterogeneity

sample
complexity“
Bt — fa
C/ . l\
“het
K ptmin(1 — 7)%€2 = !
o full-coverage
I ’
G/ 1
3 Kty (1 —7)%€? =
: SERARE==T
(\3‘\‘ ™|
S | ==
2 .
partial-coverage
K=1 1/K
vercome the insufficient coverage of individual agents
0] th ff t f individual t
by exploiting heterogeneity! J

25

Final remarks

Parameter server

Agent 1 Agent 2 - Agentk - AgentK

26

Thanks!

® The Blessing of Heterogeneity in Federated Q-Learning: Linear Speedup and
Beyond, ICML 2023. (arXiv: 2305.10697)

27

