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Hyvärinen Score

Definition (Hyvärinen Score)

The Hyvärinen score is a mapping (X ,Q) 7→ SH(X ,Q) given by

SH(X ,Q)
∆
=

1

2
∥∇X log q(X )∥22 +∆X log q(X ) (1)

whenever it can be well defined. Here, ∇X and ∆X =
∑d

i=1
∂2

∂x2i
respectively denote the

gradient and the Laplacian operators acting on X = (x1, · · · , xd)⊤.

Minimizing the Hyvärinen score is associated with score matching, which is an estimation
procedure proposed by Hyvärinen and Dayan [1] to minimize the Fisher divergence:

DF(P∥Q)
∆
= EX∼P

[
∥∇X log p(X )−∇X log q(X )∥22

]
,

where ∥ · ∥2 denotes the Euclidean norm. Additionally, it is easy to verify that DF(P∥Q) > 0
for Q ̸= P, thus the Hyvärinen score is strictly proper.
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Comparison between Log Score and Hyvärinen Score

Log Score Hyvärinen Score

Definition SL(X ,Q) = − log q(X ) SH(X ,Q) = 1
2 ∥∇X log q(X )∥22 +∆X log q(X )

Estimation θ̂MLE = argminθ
1
n

∑n
i=1 SL(Xi ,Qθ) θ̂H = argminθ

1
n

∑n
i=1 SH(Xi ,Qθ)

(Maximum Likelihood) (Score Matching)

Objective DKL[P||Q] = Ep[log p(X )− log q(x)] DF[P||Q] = Ep∥∇X log p(X )−∇X log q(X )∥2
(KL divergence) (Fisher divergence)

Advantage Classical Method Avoid the Normalization Constant

Table: Comparison between Log Score and Hyvärinen Score

3 / 48



Unnormalized Statistical Models

• We consider the parametric distribution: Qθ ∈ Qθ for θ ∈ Θ and its PDF qθ
• Suppose that our knowledge of the PDF is limited: qθ(X ) ∝ q̃θ(X ), such that

qθ(X ) = q̃θ(X )∫
q̃θ(X )dX

, and
∫
q̃θ(X )dX is unknown.

• Obtaining the exact likelihood can be computationally challenging (or even intractable):
• The approximations, such as Monte Carlo-based methods, may suffer from computational

errors.
• The partition function (denominator) is not easy to compute but the unnormalized form

(numerator) is simple.

• Alternative solution to the analysis of the unnormalized models?
• Avoid computing cumbersome normalizing constants
• Consider methods that only depend on gradients of the logarithmic density function -

Hyvärinen Score-based methods
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Our Work

• Score-based hypothesis testing for unnormalized models
• Collaboration with Enmao Diao, Khalil Elkhalil, Jie Ding, and Vahid Tarokh

• Score-based quickest change detection for unnormalized models
• Collaboration with Enmao Diao, Taposh Banerjee, Jie Ding, and Vahid Tarokh

• Robust score-based quickest change detection for unnormalized models
• Collaboration with Enmao Diao, Taposh Banerjee, Jie Ding, and Vahid Tarokh
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Quickest Change Detection

Quickest Change Detection is a fundamental task to detect abrupt changes in the data stream.
It is commonly assumed that the random variables are IID with a particular probability density
function before the change, and are IID with another density after the change.

Figure: Quickest Change Detection
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Quickest Change Detection

• Problem Formulation:
• The data stream: {Xn}n≥1 = (X1, . . . ,Xn) defined on the probability space (Ω,F ,Pν)
• The change point: the time ν ≥ 1 when an abrupt change has happened
• Under Pν , the observations X1,X2, . . . ,Xν−1 ∼ P∞ (pre-change distribution), and

Xν ,Xν+1, · · · ∼ P1 (post-change distribution)
• The change point ν is unknown but deterministic

• A quickest change detection algorithm defines a stopping rule T w.r.t. the data stream
{Xn}n≥1.

• If T ≥ ν, we have made a delayed detection; otherwise, a false alarm has happened.
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Quickest Change Detection

• The objective is to minimize the detection delay subject to a constraint on false alarms.
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Figure: Different Change Points

8 / 48



Quickest Change Detection

We consider two minimax problem formulations to find the best stopping rule.
• Lorden’s metric [2]: the worst-case averaged detection delay (WADD):

LWADD(T )
∆
= sup

ν≥1
ess supEν [(T − ν + 1)+|Fν ], (2)

where (y)+
∆
= max(y , 0) for any y ∈ R.

• Pollak’s metric [3]: the worst conditional averaged detection delay (CADD):

LCADD(T )
∆
= sup

ν≥1
Eν [T − ν|T ≥ ν]. (3)

• For false alarms, we consider the average running length (ARL), which is defined as:

ARL
∆
= E∞[T ].

• The optimization problem under Pollak’s metric becomes

min
T

LCADD(T ) subject to E∞[T ] ≥ γ. (4)
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Robust Quickest Change Detection

The pre- and post-change distributions may not be precisely known. We assume that each is
known within an uncertainty class:

P∞ ∈ G∞, and P1 ∈ G1.

For simplicity, we will assume that the pre-change class is a singleton:

G∞ = {P∞}.

Our proposed method can also be extended to the case of composite G∞.
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Robust Quickest Change Detection

The objective is to find a stopping time T to minimize the worst-case detection delay, subject
to a constraint γ on E∞[T ]:

min
T

sup
P1∈G1

LWADD(T ) subject to E∞[T ] ≥ γ, (5)

where γ is a constraint on the ARL.
We are also interested in the version with the minimax metric introduced by Pollak [3]:

min
T

sup
P1∈G1

LCADD(T ) subject to E∞[T ] ≥ γ. (6)
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Least Favorable Distribution

We define the notion of least favorable distribution (LFD). This approach to defining the least
favorable distribution for the quickest change detection is novel.

Definition (Least Favorable Distribution)

Assume that the family G1 = {Gθ : θ ∈ Θ1} is convex and compact. We define

Q1 = arg min
Gθ∈G1

DF (Gθ∥P∞). (7)

The existence of Q1 is guaranteed by the compactness of G1 and the continuity of the Fisher
divergence as a function of its arguments. Thus, Q1 is the closest element of G1 to P∞ in the
Fisher-divergence sense.
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Robust Score-based Quickest Change Detection

Given the pre-change law P∞ (with density p∞), we now use Q1 and its density q1 to design
the RSCUSUM algorithm. We define the instantaneous Robust score-based CUSUM
(RSCUSUM) score function X 7→ zλ(X ) by

zλ(X )
∆
= λ

(
SH(X ,P∞)− SH(X ,Q1)

)
, (8)

where λ > 0 is a pre-selected multiplier, SH(X ,P∞) and SH(X ,Q1) are respectively the
Hyvärinen score functions of P∞ and Q1.

• If the post-change model is precisely known, then the Q1 in the above equation will be
replaced by the known post-change law, where the RSCUSUM is equivalent to SCUSUM.
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Robust Score-based Quickest Change Detection

Our proposed stopping rule is given by

TRSCUSUM
∆
= inf

{
n ≥ 1 : max

1≤k≤n

n∑
i=k

zλ(Xi ) ≥ τ

}
, (9)

where τ > 0 is a stopping threshold, which is usually pre-selected to control false alarms.
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Robust Score-based Quickest Change Detection

The stopping rule of RSCUSUM can be written as

TRSCUSUM = inf{n ≥ 1 : Z (n) ≥ τ},

where Z (n) can be computed recursively by

Z (0) = 0,

Z (n)
∆
= (Z (n − 1) + zλ(Xn))

+, ∀n ≥ 1.

Z (n) is referred to as the detection score of RSCUSUM at time n.

• The proposed algorithm can be applied in a recursive way, which is not too demanding in
computational and memory requirements for online implementation.
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Theoretical Results

Lemma

Let P∞ be the pre-change distribution, Q1 ∈ G1 be the least-favorable distribution, and
Q2 ∈ G1 be any other post-change distribution. Then

DF (Q1∥P∞) ≤ DF (Q2∥P∞)− DF (Q2∥Q1) .

• This lemma is the key to delay and false alarm analysis for RSCUSUM.
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Theoretical Results

Theorem (Delay and False Alarm Analysis)

Subject to E∞[TRSCUSUM] ≥ γ > 0, the stopping rule TRSCUSUM satisfies

LWADD(TRSCUSUM) ∼ LCADD(TRSCUSUM) ∼ E1[TRSCUSUM] ∼
log γ

λ(DF(P1∥P∞)− DF(P1∥Q1))

≲
log γ

λD(Q1∥P∞)
, as γ → ∞.

17 / 48



Discussion of Least Favorable Distribution

Consider a general parametric distribution family P defined on X . We use Pm to denote a set
of a finite number of distributions belonging to P, namely

Pm = {Pi , i = 1, . . . ,m : Pi ∈ P}, m ∈ N+. (10)

We use pi to denote the density of each distribution Pi , i = 1, . . . ,m. Then, we define a
convex set of densities

Am
∆
=

{
x 7→

m∑
i=1

αipi (x) :
m∑
i=1

αi = 1, αi ≥ 0

}
. (11)

We further define a set of functions

Bm
∆
=

{
x 7→

m∑
i=1

βi (x)∇x log pi (x) :
m∑
i=1

βi (x) = 1, βi (x) ≥ 0, pi ∈ Pm

}
. (12)
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Discussion of Least Favorable Distribution

Consider the pre-change distribution P∞ (with density p∞) such that P∞ ∈ P and P∞ /∈ Am.
We use E∞ to denote its corresponding expectation with p∞.

Theorem

Assume that there exists an element P0 ∈ P (with density p0) such that

Ep0

{
∥∇x log p0(X )−∇x log p∞(X )∥22

}
= min

ϕ∈Bm

Eϕ

{
∥ϕ(X )−∇x log p∞(X )∥22

}
.

Then, we have

Ep0

{
∥∇x log p0(X )−∇x log p∞(X )∥22

}
= min

p∈Am

Ep

{
∥∇x log p(X )−∇x log p∞(X )∥22

}
.

(13)

• The theorem provides an efficient way to identify the LFD in a convex set with only
knowledge of the gradient of the log density functions. 19 / 48



Numerical Results

(a) MVNm

(b) RBM

RSCUSUM Non-robust SCUSUM

RSCUSUM Non-robust SCUSUM

𝑃!: bluelineblueline 𝑃": bluelineblueline 𝑃#: bluelineblueline 𝑃$: bluelineblueline

Figure: EDD versus log-scaled ARL. We respectively demonstrate the empirical EDD against log-scaled ARL for
both MVNm and RBM experiments. The results demonstrate that the EDD of RSCUSUM (subplot in left rows)
increases at a linear rate for all cases, while some EDD of non-robust SCUSUM (subplot in right rows) increases
at an exponential rate. 20 / 48



Thank you!

Questions?
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Score Matching

For a random variable X ∈ X ⊂ Rd and the probability density functions (PDFs) X 7→ p(X )
and X 7→ q(X ), we consider the Fisher divergence from p to q:

DF[p||q]
∆
= EX∼p∥∇X log p(X )−∇X log q(X )∥2 = EX∼p

[
1

2
∥∇X log p(X )∥22 + SH(X ,Q)

]
,

(14)

where (q,X ) 7→ SH(X ,Q) is given by

SH(X ,Q)
∆
=

1

2
∥∇X log q(X )∥22 +∆X log q(X ), (15)

also known as the Hyvärinen score [1]. Here, ∆X =
∑d

i=1
∂2

∂x2i
denotes the Laplacian operator

with respect to X = (x1, · · · , xd)⊤.
• The minimum of (14) is achieved if and only if q(X ) = p(X ) for any X ∈ X
• The term EX∼p

[
1
2 ∥∇X log p(X )∥22

]
can be seen as a constant to the distribution q
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Score Matching

Consider q ∈ Q = {qθ : θ ∈ Θ ⊂ Rr}, where each qθ is a PDF and p = qθ⋆ for some θ⋆ ∈ Θ.
The minimization over Fisher divergence is then reduced to the minimization of the expected
Hyvärinen score:

θ⋆ = argmin
θ∈Θ

EX∼psH(qθ,X ). (16)

Suppose that a finite sample of points X1, . . . ,Xn are independent and identically distributed
(IID) according to p. An estimator in parallel to Problem (16) is

θ̂H
∆
= argmin

θ∈Θ

1

n

n∑
i=1

sH(qθ,Xi ). (17)

The procedure of estimating the above θ̂H is known as score matching estimation [4, 5, 6],
which is a surrogate for maximum likelihood estimation (MLE).
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Hypothesis Testing

Hypothesis testing is a procedure to decide whether or not to reject a hypothesis. Given IID
observations Xn = {X1, . . . ,Xn} according to pθ⋆ , we are interested in testing the hypothesis if
θ⋆ = θ0 for a given θ0 ∈ Θ.

• Problem Formulation:

H0 : θ
⋆ = θ0 against H1 : θ

⋆ ∈ Θ\{θ0}. (18)

• Generalized Likelihood Ratio Test (GLRT)
• Take the ratio of log-likelihoods as the test statistic:

TLRT(Xn) = −2
[
ℓ(θ0,Xn)− ℓ(θ̂MLE,Xn)

]
, (19)

where ℓ(θ,Xn) = lnL(θ,Xn) and θ̂MLE = supθ∈Θ L(θ,Xn).
• Neyman-Pearson Lemma: The uniformly most powerful optimality for simple hypothesis

testing
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Hyvärinen Score Test

We develop a new statistical test, referred to as the Hyvärinen score test (HST) that is
applicable to unnormalized models.

• Test statistic, denoted as THST:

THST(Xn) ≜ 2
(
SH(Xn, θ0)− SH(Xn, θ̂H)

)
, (20)

T̃HST(Xn) ≜ 2
(
SH(Xn, θ0)− SH(Xn, θ1)

)
, (21)

where SH(Xn, θ)
∆
=
∑n

i=1 SH(Xi ,Qθ), and θ̂H is the score matching estimate.

The HST rejects the null hypothesis when the test statistic is larger than a critical value,
which can be identified using a large-sample asymptotic distribution.
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Theoretical Results

Proposition (Asymptotic distribution of T̃HST under the null hypothesis)

Assuming some regularity conditionsa, under the null hypothesis, we have

n−1/2 · (T̃HST + 2nDF[Qθ0 ||Qθ1 ])
n→∞−−−→L Z ,

where Z ∼ N (0r ,Var⋆(SH(X ,Qθ0)− SH(X ,Qθ1))) and Var⋆ denotes the variance w.r.t. the
null distribution.

asee the conditions in backup slides.
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Theoretical Results

Theorem (Asymptotic distribution of THST under the null hypothesis)

Assuming some regularity conditionsa, under the null hypothesis, we have

THST(Xn)
n→∞−−−→L ZTHZ ,

where Z ∼ N (0r ,H−1KH−1),

H
∆
= E⋆

[
∇2

θSH(X ,Qθ) |θ=θ0

]
, (22)

K
∆
= E⋆

[
∇θSH(X ,Qθ)∇⊤

θ SH(X ,Qθ) |θ=θ0

]
, (23)

n→∞−−−→L denotes convergence in distribution, and E⋆ denotes the expectation w.r.t. the null
distribution.

asee the conditions in backup slides.
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Bootstrap Hyvärinen Score Test

• We propose to use a bootstrap method to empirically determine the rejection region for
HST

• The main idea is to determine the critical value by the empirical (1− α)-quantile of the
distribution of THST(Xn) under the null hypothesis

• α is the Type I error probability that we want to control
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Experimental Results

1. We consider comparing the performance of HST with
• the GLRT, and LRT
• the Kernelized Stein Discrepancy (KSD) test, by Liu et al. [7],
• and the Maximum Mean Discrepancy (MMD) test, by Gretton et al. [8].

2. The results demonstrate that our method performs competitively with LRT and
outperforms other baseline methods in terms of empirical Type II error rates.

3. Our experiments further illustrate the computational advantage of our approach for
unnormalized models over LRT.

4. Additionally, we will show that the proposed approach achieves success in the
Out-of-distribution (OOD) detection task.
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Synthetic Experiments of Gauss-Bernoulli RBM

We consider the hypothesis testing on weight matrix W:

Simple Test: W⋆ = W0 versus W⋆ = W1 (24)

Composite Test: W⋆ = W0 versus W⋆ ̸= W0 (25)

• Randomly draw the weight matrix W0 ∈ Rdx × Rdh from N (0, 1).

• The weight matrix of the alternative hypothesis W1 is constructed by adding a noise term
following Normal distribution N (0, σ2

ptb) with different perturbation levels σptb to W0.

• The samples X1, . . . ,Xn ∼ pW⋆ are drawn using Gibbs sampling with 1000 iterations.
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Synthetic Experiments of Gauss-Bernoulli RBM

In Figure below, we present the test statistics and ROC curves for the above tests.

(a) KSD-U (b) KSD-V (c) MMD

(d) HST (Simple) (e) HST (Composite) (f) ROC

Figure: (a-e) Test statistics at n = 100. (f) Receiver Operating Characteristic (ROC) curves of various tests
with σptb = 0.01 and n = 100. 35 / 48



Application to Out-of-distribution Detection

• Out-of-distribution Detection (OOD):
• Intersects with anomaly detection, adversarial attacks, and incremental learning
• The target is to determine whether one (or few) given input is from the training data

distribution (in-distribution examples) or not (out-of-distribution examples).

Figure: Yang et al. [9]. Illustration of sub-tasks under generalized OOD detection framework with vision tasks.
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Application to Out-of-distribution Detection

HST for OOD:

• The aggregate Hyvärinen score SH(Xn,Qθ0) is used for OOD detection,

SH(Xn,Qθ0(X )) =
n∑

i=1

SH(Xi ,Qθ0)
∆
=

1

2
∥∇Xi

log qθ0(Xi )∥22 +∆Xi
log qθ0(Xi ), (26)

where the density function qθ0 is learned from the in-distribution sample and Xn is the
out-of-distribution sample.

• We reject the in-distribution hypothesis when SH(Xn,Qθ0) is larger than a threshold.

• The threshold can be decided empirically by repeating the tests over the in-distribution
train data.
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Image Data

We evaluate the performance of HST on the computer vision benchmark datasets:

• In-distribution: CIFAR-10 (Krizhevsky et al. [10])

• Out-of-distribution: TinyImageNet, a subset of ImageNet (Deng et al. [11]).

Figure: Left: CIFAR10 (Krizhevsky et al. [10]); Right: Tiny ImageNet(Deng et al. [11])
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Image Data

Implementation Details:
• Term 1: The gradient of logarithmic density function ∇X log qθ(X ) is modelled with a
SDE-based deep generative model, Noise Conditional Score Network with variance
exploding SDEs (NCSN++) [12].

• The model architecture includes four BigGAN-type [13] residual blocks per image resolution.
• we randomly crop image patches of size 32× 32 to match the shape of CIFAR-10.

• Term 2: The Laplacian term ∆X log qθ(X ) is not easy to be computed in high
dimensions.

• Apply Hutchinson’s trick [14] to reduce its computation complexity
• The Hutchinson method obtains the unbiased estimate of the Laplacian term by Monte Carlo

sampling:

∆X log qθ(X ) = Eϵ

[
ϵT · ∇X f (X , θ) · ϵ

]
= Eϵ

[
ϵT · ∇X

(
ϵT f (X , θ)

)]
, (27)

where f (X , θ)
∆
= ∇X log qθ(X ), and random projections ϵ are Normally distributed.
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Image Data

We evaluate the performance of HST for OOD detection by varying the test sample size.

(a) ROC (b) 𝒏 = 𝟏 (c) 𝒏 = 𝟏𝟓

Figure: (a) ROC curves and (b, c) histograms of test statistics of HST for OOD Detection on CIFAR10
(in-distribution) and Tiny ImageNet datasets (out-distribution).

In Figure 7, we present the ROC curve and histograms of SH(Qθ0 ,Xn) over different sample
sizes.
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Network Intrusion Detection

We next perform OOD on the KDD Cup 1999 1 dataset. The dataset contains includes a wide
variety of intrusions simulated in a military network environment [15].

• In-distribution: ‘normal’ network
• Out-of-distribution: attack networks.

• A total of 24 training attack types in train data with an additional 14 types in the test data.
• For example, unauthorized access from a remote machine attacks, e.g. guessing password.

Implementation Details:

• We train a Gauss-Bernoulli RBM with in-distribution samples to model the density
function qθ(X ).

• The aggregate Hyvärinen score of Gauss-Bernoulli RBM can be computed in a
closed-form (shown in backup slides).

1The Fifth International Conference on Knowledge Discovery and Data Mining
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Network Intrusion Detection

From Figure 8, we depict the ROC curves and the histograms of SH(Xn,Qθ0) for detecting the
malicious network attack.

0.00 0.25 0.50 0.75 1.00
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

(a) ROC

n = 1, AUC=0.86
n = 2, AUC=0.95
n = 4, AUC=0.99
n = 8, AUC=1.00
n = 10, AUC=1.00

38.8 38.6 38.4 38.2 38.0
Test Statistic

0

500

1000

1500

2000

Fr
eq

ue
nc

y

(b) n = 1

386 384 382
Test Statistic

0

20

40

60

80

100

Fr
eq

ue
nc

y

(c) n = 10

Figure: (a) ROC curves and (b, c) histograms of test statistics of the ‘ipsweep’ attack and ‘normal’ network of
HST on KDD Cup’99 dataset.

The results demonstrate that our method can detect adversarial network attacks even with a
single out-of-distribution data point. Naturally, our method performance significantly improves
when more out-of-distribution samples are available.
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Network Intrusion Detection

In Table 2, we evaluate our method with AUC.

n (size)/ Attacks back ipsweep neptune nmap pod

1 0.785 0.869 0.896 0.835 0.802
2 0.895 0.961 0.986 0.946 0.933
4 0.937 0.997 1.000 0.993 0.983
8 0.991 1.000 1.000 1.000 1.000
10 0.999 1.000 1.000 1.000 1.000

n (size) / Attacks portsweep satan smurf teardrop warezclient

1 0.921 0.928 0.818 0.882 0.645
2 0.979 0.983 0.942 0.963 0.731
4 1.000 1.000 0.972 0.996 0.803
8 1.000 1.000 1.000 1.000 0.889
10 1.000 1.000 1.000 1.000 0.928

Table: Area Under the Curve of Receiver Operating Characteristics (AUC) for our test to detect malicious
network attack for various values of sample size n.
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Asymptotic Behavior of HST

We first introduce some regularity conditions.

Assumption

1. The family qθ(X ) is identifiable, i.e., that θ ̸= θ⋆ → qθ ̸= qθ⋆ .

2. For all X ∈ X , sH(qθ,X ) is continuous in θ ∈ Θ for Θ compact.

3. There exists a function ξ1: X → ξ1(X ) such that for any θ ∈ Θ, |sH(qθ,X )| ≤ ξ1(X ) and
E⋆ [ξ1(X )] < ∞.

4. For any θ ∈ Θ, qθ(X )∇X log qθ(X ) → 0 as ∥X∥2 → ∞.

5. θ⋆ is an interior point of the parameter space Θ.

6. For all X ∈ X , sH(qθ,X ) is twice continuously differentiable in the interior of Θ.

7. The expected values E⋆

[
∇θsH(qθ,X )∇⊤

θ sH(qθ,X ) |θ=θ0

]
and E⋆

[
∇2

θsH(qθ,X ) |θ=θ0

]
exist

and are non-singular. There exists a function ξ2 : X 7→ ξ2(X ) such that∣∣∣∂2sH(qθ,X )
∂θi∂θj

∣∣∣ ≤ ξ2(X ) for all 1 ≤ i , j ≤ k, and E⋆ [ξ2(X )] < ∞.
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Asymptotic Behavior of HST

Theorem (Asymptotic distribution of THST under the null hypothesis)

Assuming the regularity conditions holds, under the null hypothesis, we have

THST(Xn)
n→∞−−−→L zTHz, (28)

where z ∼ N (0r ,H−1KH−1),

H
∆
= E⋆

[
∇2

θsH(qθ,X ) |θ=θ0

]
, (29)

K
∆
= E⋆

[
∇θsH(qθ,X )∇⊤

θ sH(qθ,X ) |θ=θ0

]
, (30)

and L denotes convergence in distribution.
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Gauss-Bernoulli RBM

The RBM [16] is a generative graphical model defined on a bi-partite graph of hidden and
visible variables. The Gauss-Bernoulli RBM has binary-valued hidden variables h ∈ {0, 1}dh
and real-valued visible variables X ∈ Rdx with joint distribution

p(X ,h) =
1

Z
exp

−

1

2

dx∑
i=1

dh∑
j=1

xi
σi
Wijhj +

dx∑
i=1

bixi +

dh∑
j=1

cjhj −
1

2

dx∑
i=1

x2i
σ2
i

 , (31)

where model parameters θ = (W,b, c) and Z is the normalizing constant. We set σi = 1 for
all i = 1, . . . , dx in the following experiments.
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Gauss-Bernoulli RBM

The probability of the visible variable X written as
p(X ) =

∑
h∈{0,1}dh p(X ,h) = 1

Z exp{−Fθ(X )}, where Fθ(X ) is the free energy given by

Fθ(X ) =
1

2

dx∑
i=1

(xi − bi )
2 −

dh∑
j=1

Softplus

(
dx∑
i=1

Wijxi + bj

)
. (32)

The Softplus function is defined as Softplus(t)
∆
= log(1 + exp(t)) with a default scale

parameter β = 1. By Equation (15), the corresponding Hyvärinen score SH(Xn, θ) is given by

SH(Xn, θ) =
n∑

n=1

dx∑
i=1

1
2

xin − bi +

dh∑
j=1

Wijδjn

2

+

dh∑
j=1

W 2
ij δjn (1− δjn)− 1

 , (33)

where δjn
∆
= Sigmoid(

∑dx
i=1Wijxin + bj). The Sigmoid function is defined as

Sigmoid(t)
∆
= (1 + exp(−t))−1.
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Assumptions for Quickest Change Detection

• P1 ̸= P∞
• The same mild regularity conditions so that the Hyvärinen score is well-defined2:

• The pre- and post-change PDFs, e.g. p1(x), p∞(x), are differentiable with respect to x .
• The functions ∇x log p∞(x) and ∇x log p1(x) are differentiable w.r.t. x .
• The expectations EX∼p∞ [∥∇x log p∞(X )∥22] and EX∼p1 [∥∇x log p1(X )∥22] are finite.
• p(x)∇x log p∞(x) → 0 and p(x)∇x log p1(x) → 0 when ∥x∥2 → 0.

2Hyvärinen and Dayan [1]
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